
MQOM: MQ on my Mind 
— Version 2 —

Ryad Benadjila, Charles Bouillaguet 
Thibauld Feneuil, Matthieu Rivain 

PEPR PQ TLS 

March 13, 2025, Inria Paris



Table of Contents

- Round-2 Updates for MPCitH-based schemes 

- High-level idea of MQOM v2 

- Benchmarks of MQOM v2 

- Conclusion



Round-2 Updates



Round-2 Updates for MPCitH-based schemes
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Round-2 Updates for MPCitH-based schemes

- The both frameworks are interchangeable, several schemes mention a 
variant with the other framework.  

- Mirath, MQOM, RYDE and SDitH uses the PIOP formalism to describe 
their scheme, instead of a sharing-based formalism (TCitH) or a VOLE-
based formalism (VOLEitH). 

- FAEST, Mirath, MQOM, RYDE and SDitH now primarily utilize Rijndael-
based (AES-128, …) as symmetric primitives (for pseudorandom generator 
and commitment), shifting away from Keccak-based hashes to improve 
the scheme’s speed. 

- MQOM and SDitH use only binary fields, moving away from prime fields. 

- While the round-1 versions of those schemes have sizes between 5.5 KB 
and 10.5 KB for the first security level, the round-2 versions have sizes 
between 2.8 KB and 5.9 KB, with keys of several hundred bytes.
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How to build MQOM?

I know the 
private key.

I am convinced.

From an
identification scheme

For example ( ), find  
such that 

n = m = 2 x, y ∈ 𝔽q

{x2 − y2 + 2x+5 = 0
4x2−x−3y−1 = 0.

Multivariate Quadratic Problem

From  quadratic multivariate polynomials 
, find  such that 

m
f1, …, fm x1, …, xn ∈ 𝔽q

f1(x1, …, xn) = 0,
⋮

fm(x1, …, xn) = 0.
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I know the 
private key.

I am convinced.

From an
identification scheme

Multivariate Quadratic Problem

From  quadratic multivariate polynomials 
, find  such that 

m
f1, …, fm x1, …, xn ∈ 𝔽q

f1(x1, …, xn) = 0,
⋮

fm(x1, …, xn) = 0.

Public Key: a random multivariate 
quadratic system  

Secret Key: the MQ solution 

( f1, …, fm)

x1, …, xn

Used parameters: , over the field  or .n = m 𝔽2 𝔽256



The PIOP Formalism

The TCitH and VOLEitH frameworks can be described with the PIOP formalism. 

• Manipulated objects in TCitH: (Shamir’s secret) sharings 

• Manipulated objects in VOLEitH: VOLE correlations 

• Manipulated objects in PIOP: Polynomials 

Lead to a description that does not depend on MPC technologies, 
leading to an easier-to-understand scheme for those who do not already 

know those two frameworks 



The PIOP Formalism

The TCitH and VOLEitH frameworks can be described with the PIOP formalism. 

• Manipulated objects in TCitH: (Shamir’s secret) sharings 

• Manipulated objects in VOLEitH: VOLE correlations 

• Manipulated objects in PIOP: Polynomials 

Lead to a description that does not depend on MPC technologies, 
leading to an easier-to-understand scheme for those who do not already 

know those two frameworks 

For more details, see the talk: 

Feneuil. The Polynomial-IOP Vision of the Latest MPCitH Frameworks for 
Signature Schemes. Post-Quantum Algebraic Cryptography - Workshop 2, IHP. 

2024-11-08. Recording available online.
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where  is a public degree-  polynomial.

w1, …, wn

f(w1, …, wn) = 0

f 2
Prove it!
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polynomial  such that  

Sample a random degree-  
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i 1
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1
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Com(P0, P1, …, Pn)
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How to commit to polynomials?

①  VOLEitH / TCitH-GGM

② Degree-enforcing commitment 

(TCitH-MT)

③ Merkle Trees with 

Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[BBD+23] Baum, Braun, Delpech, Klooß, 
Orsini, Roy, Scholl. Publicly Verifiable Zero-
Knowledge and Post-Quantum Signatures 
From VOLE-in-the-Head. Crypto 2023. 

[FR23] Feneuil, Rivain. Threshold 
Computation in the Head: Improved 
Framework for Post-Quantum Signatures 
and Zero-Knowledge Arguments. ePrint 
2023/1573.
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Benchmark MQOM v2

MQOMv2 Instance PK Size Sizes (R3) Sizes (R5) Sig. / Verif. Running times

NIST I

gf2
Short

52 B
2 868 B 2 820 B ≈ 18-20 Mcycles

Fast 3 212 B 3 144 B ≈ 9-10 Mcycles

gf256
Short

80 B
3 540 B 3 156 B ≈ 12-15 Mcycles

Fast 4 164 B 3 620 B ≈ 3-4 Mcycles

NIST V

gf2
Short

104 B
11 764 B 11 564 B ≈ 133-143 Mcycles

Fast 13 412 B 13 124 B ≈ 85-88 Mcycles

gf256
Short

160 B
14 564 B 12 964 B ≈ 56-61 Mcycles

Fast 17 444 B 15 140 B ≈ 14-15 Mcycles

Benchmark run over an AMD Ryzen Threadripper PRO 7995WX (an AVX-512+GFNI machine)  
for the implementation release v2.0.1 (https://github.com/mqom/mqom-v2). 

Currently, the existing implementations of MQOM have not been fully optimized, and their benchmarks 
do not accurately represent the computational performance of the MQOM signature scheme.⚠

https://github.com/mqom/mqom-v2


Comparison (MPCitH)
NIST Submission

Security Assumptions Candidate Name Sizes

AES Block cipher
Secret Key FAEST 4.5-5.9 KB

Fixed Key (EM) FAEST-EM 3.9-5.1 KB

MinRank
Field GF(2)

Mirath
2.9-3.5 KB

Field GF(16) 3.1-3.7 KB

Multivariate Quadratic
Field GF(2)

MQOM
2.8-3.2 KB

Field GF(256) 3.1-4.1 KB

Permuted Kernel
t=3

PERK
6.3-8.4 KB

t=5 5.8-8.0 KB

Rank Syndrome Decoding RYDE 3.0-3.6 KB

Syndrome Decoding SDitH 3.7-4.5 KB



Conclusion



MQOM v2

- Among the shortest MPCitH signature schemes: 

• Since all the other one-way functions as expressed as a structured 
(quadratic or cubic) multivariate system, it leads to larger systems 
for a given field, and so the MQ-based signature is the more 
efficient (in terms of communication). 

- Among the simplest MPCitH signature schemes: 

• Do not need to arithmetize the one-way function as a multivariate 
system. 

• Rely on the TCitH framework 

- MQOM v2 is the only NIST MPCitH-based candidate that has a 
variant with 3 rounds (the other schemes have 5 rounds or 7 rounds).



What’s next?

- Implementation effort for the new versions of the MPCitH-based 
schemes 

- Fine-tuning of the parameters for trade-offs 

- Many possible optimizations 

• Use of Rijndael-based ciphers (AES128, Rijndael-256-256, …) 
for seed derivation and seed commitments 

• Possible choices for tree derivation 

• …
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