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- 6 MPCitH-based schemes have been selected for round 2:

FAEST, Mirath, MQOM, PERK, RYDE, SDitH

- Two new MPCitH frameworks since the previous NIST deadline:

VOLE-in-the-Head (summer 2023) and TC-in-the-Head (fall 2023)
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- 6 MPCitH-based schemes have been selected for round 2:

FAEST, Mirath, MQOM, PERK, RYDE, SDitH

- Two new MPCitH frameworks since the previous NIST deadline:

VOLE-in-the-Head (summer 2023) and TC-in-the-Head (fall 2023)

- Round-1 FAEST was relying on the VOLEitH framework, still the case for
the round-2 version.

- Round-2 SDitH now relies on the VOLEitH framework.

- Round-2 versions of Mirath, MQOM, and RYDE now rely on the TCitH
framework.

- Round-1 PERK was relying on the shared-permutation framework, still the
case for the round-2 version.
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based (AES-128, ...) as symmetric primitives (for pseudorandom generator
and commitment), shifting away from Keccak-based hashes to improve
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- The both frameworks are interchangeable, several schemes mention a
variant with the other framework.

- Mirath, MQOM, RYDE and SDitH uses the PIOP formalism to describe
their scheme, instead of a sharing-based formalism (TCitH) or a VOLE-
based formalism (VOLEitH).

- FAEST, Mirath, MQOM, RYDE and SDitH now primarily utilize Rijndael-
based (AES-128, ...) as symmetric primitives (for pseudorandom generator
and commitment), shifting away from Keccak-based hashes to improve
the scheme'’s speed.

- MQOM and SDitH use only binary fields, moving away from prime fields.

- While the round-1 versions of those schemes have sizes between 5.5 KB
and 10.5 KB for the first security level, the round-2 versions have sizes
between 2.8 KB and 5.9 KB, with keys of several hundred bytes.






From an ” Multivariate Quadratic Problem
identification scheme

From m quadratic multivariate polynomials

Jis s Jo find 2y, .., x, € F, such that
| know the , .
private key. i hGpnx,) =0,
> kfm(xl, cees .Xn) = 0.
< \
<€

>
. For example (n =m = 2), find x,y € [Fq
7 such that

| am convinced.

X2 —y?4+2x+5=0
4x*—x=3y—1=0.



From an ” Multivariate Quadratic Problem
identification scheme

From m quadratic multivariate polynomials

Jis s Jo find 2y, .., x, € F, such that
| know the , .
private key. i hGpnx,) =0,
> kfm(xl, cees .Xn) = 0.
< \
<€

>
7. Public Key: a random multivariate

| am convinced. quadratic system (fl, .. ,fm)

Secret Key: the MQ solution x;, ..., x,,




From an ” Multivariate Quadratic Problem
identification scheme

From m quadratic multivariate polynomials

Jis s Jo find 2y, .., x, € F, such that
| know the , .
private key. i hGpnx,) =0,
> kfm(xl, cees .Xn) = 0.
< \
<€

>
7. Public Key: a random multivariate

| am convinced. quadratic system (fl, .. ,fm)

Secret Key: the MQ solution x;, ..., x,,

Used parameters: n = m, over the field F, or 5.



The PIOP Formalism

The TCitH and VOLEitH frameworks can be described with the PIOP formalism.
* Manipulated objects in TCitH: (Shamir’s secret) sharings
* Manipulated objects in VOLEitH: VOLE correlations
* Manipulated objects in PIOP: Polynomials

Lead to a description that does not depend on MPC technologies,
leading to an easier-to-understand scheme for those who do not already
know those two frameworks



The PIOP Formalism

The TCitH and VOLEitH frameworks can be described with the PIOP formalism.
* Manipulated objects in TCitH: (Shamir’s secret) sharings
* Manipulated objects in VOLEitH: VOLE correlations
* Manipulated objects in PIOP: Polynomials

Lead to a description that does not depend on MPC technologies,
leading to an easier-to-understand scheme for those who do not already
know those two frameworks

For more details, see the talk:

Feneuil. The Polynomial-IOP Vision of the Latest MPCitH Frameworks for

Signature Schemes. Post-Quantum Algebraic Cryptography - Workshop 2, IHP,
2024-11-08. Recording available online.
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@ For all i, sample a random degree-1
polynomial P(X) such that P,(0) = w;,

Sample a random degree-1
polynomial Py(X)

@ Commit the polynomials Py, Py, ..., P, >

@ Reveal the polynomial Q(X) such that
X - Q(X) = X - Py(X) + f(P,(X), ..., P,(X))

Well-defined!

0 - Py(0) + F(Py(0), ..., P(0)) = 0+ f(wy, ..., w,) =0

Prover Verifier
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polynomial Py(X)
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@ For all i, choose a degree-1 polynomial
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High-Level Idea of MQOM v2

@ Reveal the polynomial Q(X). We know that
X-0X) #X-PyX) +f(P(X), ..., P,(X)) . Choose a random evaluation

pointreSCFlF

® Reveal the evaluation v, := P(r) for all i.

Check that
r-Qr)=r-vyg+f(vy,...,v,)

Malicious Prover ©& Verifier




@ Reveal the polynomial Q(X). We know that
X - Q(X) # X - Py(X) + f(P,(X), ..., P,(X))

Choose a random evaluation
pointreScl

Schwartz-Zippel Lemma: Let D be the non-zero degree-2 polynomial

defined as
D =X - 0X) = X - PyX) = f(P(X), ..., P,(X))

Check that

We have
r-Qr)=r-vyg+f(vy,...,v,)

Pr[verification passes] = Pr [D(r) =

Verifier




@ Forall i, sample a random degree-1
polynomial P(X) such that P,(0) = w;,

Sample a random degree-1
polynomial Py(X)

@ Commit the polynomials Py, Py, ..., P,

@ Reveal the polynomial Q(X) such that 0
X-0X)=X-PyX)+f(Pi(X),...,P,(X)) > @4 Choose a random evaluation
< i pointreScl
B Reveal the evaluation v, := P(r) for all i. Vs Vis -5 Vy,

> | ©® Check that Vs Vis -+ 5 V),

are consistent with the
commitment.

Check that
r-Qr)y=r-vyg+f(vy,...,v,)

Prover Verifier @@
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polynomial P(X) such that P,(0) = w, § ZGFO'K”OWledge AnalyS|S

Vos Vis +++9 Vy

Revealing an evaluation of P,(X)

leaks no information about w,.

Verifier »#)




Zero-Knowledge Analysis

Sample a random degree-1
polynomial Py(X)

>
@ Reveal the polynomial Q(X) such that n
X-0X)=X-PyX)+f(P(X), ..., P,(X))
<
>

Revealing Q(X) leaks no information

about w;, thanks to Py(X).

Verifier »#)




High-Level Idea of MQOM v2

| know wy, ..., w, such that

fw,.o.ow) =0

| where fis a public degree-2 polynomial.

Prove it!

Prover Verifier

2
Soundness Error = ——

Probability that a malicious prover /

can convince the verifier.
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High-Level Idea of MQOM v2

@ For all i, sample a random degree-1
polynomial P(X) such that P,(0) = w;,

Sample m random degree-1

polynomials Py(X) = (PO’I(X), "”PO,m(X))

Com(Py, Py, ..., P,)
@ Commit the polynomials Py, Py, ..., P, >

@ Reveal the polynomials Q,(X), ..., Q,(X)
such that

X-0/(X)=X-Py(X)+f(P(X),...., P (X))

X Q0,X) =X Py (X)) + fu(P1(X), ..., P(X)) Qp, - O , | @ Choose a random evaluation
- pointreScFl
® Reveal the evaluation v, := P(r) for all i. |
eveal the evaluation v, := P,(r) for all 1. Vo Vi eV, ® Check that Vv
>

are consistent with the
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Check that
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Prover P Q) = Vo F LV sV



@ For all i, sample a random degree-1
polynomial P(X) such that P,(0) = w;,

Sample m random degree-1
polynomials Py(X) = (PO,I(X), ""PO,m(X))

@ Commit the polynomials Py, Py, ..., P,

@ Reveal the polynomials Q,(X), ..., Q,(X)
such that

X Q1(X) = X Py ;(X) + f,(P1(X), ... P,(X))

X- Qm(X) =X PO,m(X) +fm(P1(X)a ’Pn(X))

B Reveal the evaluation v, := P,(r) for all i.

-

Com(Py, Py, ..., P,)

O ...,0,
r
Vos Vis -5 Vy

Sigma variant (3r) of MQOM v2

@) Choose a random evaluation

pointreSCFlF

® Check that Vg Vis -5 V),

are consistent with the
commitment.

Check that

r-Qur)=r-vy; +filvy, ...

r-Q,(r)=r-vy,, t 10



@ For all i, sample a random degree-1
polynomial P(X) such that P,(0) = w;,

Sample m random degree-1

polynomials Py(X) = (P(),l(X)’ ""PO,m(X)>
Com(Py, Py, ..., P)

@ Commit the polynomials Py, Py, ..., P, >

@ Reveal the polynomials Q,(X), ..., Q,.(X)
such that

X - QX)) =X Py (X) +/(P(X),.... P(X))

X Q0,(X) =X Py, (X) + £, (P1(X), ..., Py(X)) > 4 Choose a random evaluation

pointreScCl

Reveal the evaluation v. := P.(r) for all i.
® t () ® Check that Vg Vis -V,

are consistent with the
commitment.

Check that
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@ For all i, sample a random degree-1
polynomial P(X) such that P(0) = w,

Sample m random degree-1
polynomials Py(X) = (P(),l(X)’ ...,PO,m(X)>

@ Commit the polynomials Py, Py, ..., P,

@ Reveal the polynomials Q,(X), ..., Q,.(X)
such that

X - QX)) =X Py (X) +/(P(X),.... P(X))

X - Qm(X) =X- PO,m(X) +ﬁn(Pl(X)’ T Pn(X))

® Reveal the evaluation v, := P(r) for all i.

A bit costly!

MQOM v2

Com(P,y, Py, .

P

oo n

)

Prover Solution: batching

@ Choose a random evaluation

pointreScCl

® Check that vy, vy, ..., v,
are consistent with the
commitment.

Check that

r- Qi) =r-vo +fi0vy, ...

r- Qm(r) =r- VO,m +f;11(vl’ o
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Prover
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High-Level Idea of MQOM v2

@ For all i, sample a random degree-1
polynomial P(X) such that P,(0) = w,

Sample a random degree-1
polynomial Py(X)
Com(Py, Py, ..., P,)

@ Commit the polynomials Py, Py, ..., P, »| @ Choose random coefficients
) yl""’ym }/1,°"7}/m<_$|]:
@ Reveal the polynomial Q(X) such that
c 0,
X-Q(X)=X-PyX)+ ) 7 f(P1(X), ... P,(X)) >
j=1

Prover Verifier




@ Reveal the polynomial Q(X) such that

X-Q(X)=X-PyX)+ ) 7 f(P1(X), ... P,(X))
j=1

Well-defined!

Y v f(Py0), ...

j=1

PO) = ) 7 fWy...cow,)
=1

=i?j'0=0
j=1

Prover




@ For all i, sample a random degree-1
polynomial P,(X) such that P;(0) = w;

Sample a random degree-1

polynomial Py(X)
@ Commit the polynomials Py, Py, ..., P,

4 Reveal the polynomial Q(X) such that

X-Q(X)=X-PyX)+ ) 7 f(P1(X), ... P,(X))
j=1

® Reveal the evaluation v, := P,(r) for all i.

Prover

Com(Py, Py, ..., P)

Vi -5 Vm

@ Choose random coefficients

Y1 s Vm S

(5) Choose a random evaluation
pointreSCFlF

Verifier




High-Level Idea of MQOM v2

Sa ain o o o d

@ For all i, sample a random degree-1
polynomial P(X) such that P,(0) = w,

Sample a random degree-1
polynomial Py(X)
Com(Py, Py, ..., P,)

@ Commit the polynomials Py, Py, ..., P, »| 3 Choose random coefficients
Y5 -oVm ViseeosVy <> F
@ Reveal the polynomial Q(X) such that )
X-0X) =X PyX)+ Z vi - J(P1(X), ..., P (X)) ¢ » | (B Choose a random evaluation
=1 r pointreSCFlF
® Reveal the evaluation v, := P,(r) for all i. ) Vor ¥y y
b | @ Checkthat vy, vy, ..., v,
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Check that
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@ Forall i, choose a degree-1 polynomial
P(X). There exists j* s.t.

f(P(0), ..., P,(0)) # 0.

Sample a random degree-1
polynomial Py(X) Com(Py, P, ... P.)
@ Commit the polynomials Py, Py, ..., P, »| @ Choose random coefficients
Yioooos¥m Yis o5 Vi S F
4 Reveal the polynomial Q(X) such that )
X-0X)#X-PyX)+ Z Vi - [iP(X), ..., P(X)) © » | (B Choose a random evaluation
7= r pointreScCF
® Reveal the evaluation v, := P,(r) for all i. ) - y
0> 71> <> " | @ Checkthat vy, vy, ..., v,
are consistent with the
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Check that
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@ Forall i, choose a degree-1 polynomial
P(X). There exists j* s.t.

Sample a random degree-1
polynomial Py(X)

@ Commit the polynomials Py, Py, ..., P,

@ Reveal the polynomial Q(X) such that

X-Q(X) # X - Py(X)+ )7 f(P1(X), ... P, (X))
=1

® Reveal the evaluation v, := P for all i.

Prover

High-Level Idea of MQOM v2

Com(Py, Py, ..., P,)

Vs -+

s Vm

Y 7, f(Py(0), ... P,(0) # 0

J=1

It is an inequality with high probability over the
randomness of 7y, ..., 7,,, since we have

@ Choose random coefficients

Y5+ Vm <*F
(5) Choose a random evaluation

pointreSCFlF

@ Check that vy, vy, ..., Vv,
are consistent with the



High-Level Idea of MQOM v2

@ Forall i, choose a degree-1 polynomial
P(X). There exists j* s.t.

f(P(0), ..., P,(0)) # 0.

Sample a random degree-1

polynomial Py(X) Com(P,, Py, ..., P,)

@ Commit the polynomials Py, Py, ..., P, »| @ Choose random coefficients

V1> o> Vm Viseeortm < F

@ Reveal the polynomial Q(X) such that

- Q
X-Q(X) #X- Py(X) + Z Vi - [iP(X), ..., P(X)) » | (B Choose a random evaluation
= r pointre S Cl
® Reveal the evaluation v, := P,(r) for all i. . y
0> 71> <> " | @ Checkthat vy, vy, ..., v,
are consistent with the

commitment.

Check that
r-Qr)=r-vy+ Zyj SV e V)

j=1

Schwartz-Zippel Lemma: Since it is a degree-2 relation,

2

Pr|verification passes] < —.

S|

Verifier




M Forall i, sample a random degree-1
polynomial P(X) such that P,(0) = w,
Sample a random degree-1
polynomial Py(X)
Com(Py, Py, ..., P,)
@ Commit the polynomials Py, Py, ..., P, »| @ Choose random coefficients
< Mo T 71’°-'aym<_$|]:
@ Reveal the polynomial Q(X) such that
c 0,
X -0X)=X-PyX)+ Z it 'J§(P1(X)a coes P(X)) » | B Choose a random evaluation
=1 r pointr € SCF
<
® Reveal the evaluation v, := P,(r) for all i. . y
0> 1> =2 ¥ g @ Check that vy, vy, ..., Vv,
are consistent with the
commitment.
Check that
T A S I T A S S T S A R T N G S S TS \ v Q(r) =r-V + Z }/] .fj‘.(vl, e vn)
: =1
5-round variant (5r) of MQOM v2
) Verifier
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@ Commit the polynomials Py, Py, ..., P,

® Reveal the evaluation v, := P,(r) for all i.

Prover

Com(Py, Py, ..., P,)

n

@ Check that vy, vy, ..., Vv,

are consistent with the

commitment.

Verifier
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Public data: Let us

- have N distinct values ¢y, ..., ey, and
- define R; such that R(0) = 1 and R(e;) = 0, foralliin {1,..., N}.

We want to build and commit a random degree-1 polynomial P. We sample N

values ry, ..., ry and define P as

o Z i R; Costly! @

l

Correctness: Commitment: Opening P(e;):
It N > 2, Pisarandom We commit to each value Reveal all {r;}; .
degree-1 polynomial. r; independently.

P(e;) = Z i Rie) + 7 - Rin(es)

i -

X Can be adapted to o
any degree. - 2 ;- Ri(ex)

i

The opening leaks nothing

about P, except P(e;:).
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[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

sibling path root_seed
— log(NV) seeds /:

to be revealed
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How to have a negligible soundness error?

1. Taking N > 2. Impossible since the complexity would be in 02h).

2. ICitH-GGM Approach. Taking N small (e.g. N = 256) and repeating the

2 T
protocol 7 times. Soundness error of <N :

3. VOLEitH Approach. Embed 7 polynomials over [, into a unique

polynomial over I]:qf, for which we will be able to open N evaluations.

2

Soundness error of —.
NT



Complexity in O(N) to have a soundness error of — (degree-1 polynomials).

~
L)

How to have a negligible soundness error? &

1. Taking N > 2*. Impossible since the complexity would be in O(2%).

Mirath 2. ICitH-GGM Approach. Taking N small (e.g. N = 256) and repeating the

MQOM v2
RYDE v2

2 T
protocol 7 times. Soundness error of (N) .

3. VOLEitH Approach. Embed 7 polynomials over [, into a unique

FAEST polynomial over [ ., for which we will be able to open N* evaluations.
SDitH 9)

Soundness error of —.
Nr
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| know wy,

Prover

..., W, such that

Wy, ..w,)

Lfm(wl, ces W)

=0

=0,

; where f, ..., f,, are public degree-2 polynomials. ;

Prove it!

V' Verifier



Building

MQOM v2

Fiat-Shamir
S Transformation

| know wy, ..., w, such that

; fiwy,.w,) =0 ' ’ -
| ) : f Signature Scheme
{ Lfm(wl’ cees Wn) = O, i

i \

i where f}, ..., f,, are public degree-2 polynomials. §

\

Prove it!

Prover ¥ Verifier



MQOMVv2 Instance PK Size Sizes (R3) Sizes (R5) | Sig. / Verif. Running times
Short 2 868 B 28208 ~ 18-20 Mcycles
gf2 52 B
Fast 32128B 3144 8B ~ 9-10 Mcycles
NIST |
Short 3540 B 3156 8B ~ 12-15 Mcycles
gf256 80 B
Fast 4164 B 36208 ~ 3-4 Mcycles
Short 11764 B 11564 B ~ 133-143 Mcycles
gf2 104 B
Fast 13412 B 13124 B ~ 85-88 Mcycles
NIST V
Short 14 564 B 12 964 B ~ 56-61 Mcycles
gf256 160 B
Fast 17 444 B 15140 8B ~ 14-15 Mcycles

Benchmark run over an AMD Ryzen Threadripper PRO 7995WX (an AVX-512+GFNI machine)
for the implementation release v2.0.1 (https://github.com/mgom/mgom-v2).

Currently, the existing implementations of MQOM have not been fully optimized, and their benchmarks
* \ do not accurately represent the computational performance of the MQOM signature scheme.


https://github.com/mqom/mqom-v2

NIST Submission

Security Assumptions Candidate Name Sizes
Secret Key FAEST 4.5-5.9 KB
AES Block cipher
Fixed Key (EM) FAEST-EM 3.9-5.1 KB
Field GF(2) 2.9-3.5 KB
MinRank Mirath
Field GF(16) 3.1-3.7 KB
Field GF(2) 2.8-3.2 KB
Multivariate Quadratic MQOM
Field GF(256) 3.1-4.1 KB
t=3 6.3-8.4 KB
Permuted Kernel PERK
t=5 5.8-8.0 KB
Rank Syndrome Decoding RYDE 3.0-3.6 KB
Syndrome Decoding SDitH 3.7-4.5 KB







MQOM v2

- Among the shortest MPCitH signature schemes:

® Since all the other one-way functions as expressed as a structured
(quadratic or cubic) multivariate system, it leads to larger systems
for a given field, and so the MQ-based signature is the more
efficient (in terms of communication).

- Among the simplest MPCitH signature schemes:

® Do not need to arithmetize the one-way function as a multivariate
system.

® Rely on the TCitH framework

- MQOM v2 is the only NIST MPCitH-based candidate that has a
variant with 3 rounds (the other schemes have 5 rounds or 7 rounds).



What's next?

- Implementation effort for the new versions of the MPCitH-based
schemes

- Fine-tuning of the parameters for trade-offs

- Many possible optimizations

® Use of Rijndael-based ciphers (AES128, Rijndael-256-256, ...)
for seed derivation and seed commitments

® Possible choices for tree derivation
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schemes
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- Many possible optimizations

® Use of Rijndael-based ciphers (AES128, Rijndael-256-256, ...)
for seed derivation and seed commitments

® Possible choices for tree derivation

Thank you for your attention.



