
MQOM: MQ on my Mind
— Version 2 —

Ryad Benadjila, Charles Bouillaguet
Thibauld Feneuil, Matthieu Rivain

PEPR PQ TLS

March 13, 2025, Inria Paris

Table of Contents

- Round-2 Updates for MPCitH-based schemes

- High-level idea of MQOM v2

- Benchmarks of MQOM v2

- Conclusion

Round-2 Updates

Round-2 Updates for MPCitH-based schemes

- 6 MPCitH-based schemes have been selected for round 2:

FAEST, Mirath, MQOM, PERK, RYDE, SDitH

- Two new MPCitH frameworks since the previous NIST deadline:

VOLE-in-the-Head (summer 2023) and TC-in-the-Head (fall 2023)

[FR23] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. ePrint
2023/1573.

[BBD+23] Baum, Braun, Delpech, Klooß,
Orsini, Roy, Scholl. Publicly Verifiable
Zero-Knowledge and Post-Quantum
Signatures From VOLE-in-the-Head.
Crypto 2023.

Round-2 Updates for MPCitH-based schemes

- 6 MPCitH-based schemes have been selected for round 2:

FAEST, Mirath, MQOM, PERK, RYDE, SDitH

- Two new MPCitH frameworks since the previous NIST deadline:

VOLE-in-the-Head (summer 2023) and TC-in-the-Head (fall 2023)

- Round-1 FAEST was relying on the VOLEitH framework, still the case for
the round-2 version.

- Round-2 SDitH now relies on the VOLEitH framework.

- Round-2 versions of Mirath, MQOM, and RYDE now rely on the TCitH
framework.

- Round-1 PERK was relying on the shared-permutation framework, still the
case for the round-2 version.

Round-2 Updates for MPCitH-based schemes

- The both frameworks are interchangeable, several schemes mention a
variant with the other framework.

Round-2 Updates for MPCitH-based schemes

- The both frameworks are interchangeable, several schemes mention a
variant with the other framework.

- Mirath, MQOM, RYDE and SDitH uses the PIOP formalism to describe
their scheme, instead of a sharing-based formalism (TCitH) or a VOLE-
based formalism (VOLEitH).

Round-2 Updates for MPCitH-based schemes

- The both frameworks are interchangeable, several schemes mention a
variant with the other framework.

- Mirath, MQOM, RYDE and SDitH uses the PIOP formalism to describe
their scheme, instead of a sharing-based formalism (TCitH) or a VOLE-
based formalism (VOLEitH).

- FAEST, Mirath, MQOM, RYDE and SDitH now primarily utilize Rijndael-
based (AES-128, …) as symmetric primitives (for pseudorandom generator
and commitment), shifting away from Keccak-based hashes to improve
the scheme’s speed.

Round-2 Updates for MPCitH-based schemes

- The both frameworks are interchangeable, several schemes mention a
variant with the other framework.

- Mirath, MQOM, RYDE and SDitH uses the PIOP formalism to describe
their scheme, instead of a sharing-based formalism (TCitH) or a VOLE-
based formalism (VOLEitH).

- FAEST, Mirath, MQOM, RYDE and SDitH now primarily utilize Rijndael-
based (AES-128, …) as symmetric primitives (for pseudorandom generator
and commitment), shifting away from Keccak-based hashes to improve
the scheme’s speed.

- MQOM and SDitH use only binary fields, moving away from prime fields.

Round-2 Updates for MPCitH-based schemes

- The both frameworks are interchangeable, several schemes mention a
variant with the other framework.

- Mirath, MQOM, RYDE and SDitH uses the PIOP formalism to describe
their scheme, instead of a sharing-based formalism (TCitH) or a VOLE-
based formalism (VOLEitH).

- FAEST, Mirath, MQOM, RYDE and SDitH now primarily utilize Rijndael-
based (AES-128, …) as symmetric primitives (for pseudorandom generator
and commitment), shifting away from Keccak-based hashes to improve
the scheme’s speed.

- MQOM and SDitH use only binary fields, moving away from prime fields.

- While the round-1 versions of those schemes have sizes between 5.5 KB
and 10.5 KB for the first security level, the round-2 versions have sizes
between 2.8 KB and 5.9 KB, with keys of several hundred bytes.

High-Level Idea of MQOM v2

How to build MQOM?

I know the
private key.

I am convinced.

From an
identification scheme

For example (), find
such that

n = m = 2 x, y ∈ 𝔽q

{x2 − y2 + 2x+5 = 0
4x2−x−3y−1 = 0.

Multivariate Quadratic Problem

From quadratic multivariate polynomials
, find such that

m
f1, …, fm x1, …, xn ∈ 𝔽q

f1(x1, …, xn) = 0,
⋮

fm(x1, …, xn) = 0.

How to build MQOM?

I know the
private key.

I am convinced.

From an
identification scheme

Multivariate Quadratic Problem

From quadratic multivariate polynomials
, find such that

m
f1, …, fm x1, …, xn ∈ 𝔽q

f1(x1, …, xn) = 0,
⋮

fm(x1, …, xn) = 0.

Public Key: a random multivariate
quadratic system

Secret Key: the MQ solution

(f1, …, fm)

x1, …, xn

How to build MQOM?

I know the
private key.

I am convinced.

From an
identification scheme

Multivariate Quadratic Problem

From quadratic multivariate polynomials
, find such that

m
f1, …, fm x1, …, xn ∈ 𝔽q

f1(x1, …, xn) = 0,
⋮

fm(x1, …, xn) = 0.

Public Key: a random multivariate
quadratic system

Secret Key: the MQ solution

(f1, …, fm)

x1, …, xn

Used parameters: , over the field or .n = m 𝔽2 𝔽256

The PIOP Formalism

The TCitH and VOLEitH frameworks can be described with the PIOP formalism.

• Manipulated objects in TCitH: (Shamir’s secret) sharings

• Manipulated objects in VOLEitH: VOLE correlations

• Manipulated objects in PIOP: Polynomials

Lead to a description that does not depend on MPC technologies,
leading to an easier-to-understand scheme for those who do not already

know those two frameworks

The PIOP Formalism

The TCitH and VOLEitH frameworks can be described with the PIOP formalism.

• Manipulated objects in TCitH: (Shamir’s secret) sharings

• Manipulated objects in VOLEitH: VOLE correlations

• Manipulated objects in PIOP: Polynomials

Lead to a description that does not depend on MPC technologies,
leading to an easier-to-understand scheme for those who do not already

know those two frameworks

For more details, see the talk:

Feneuil. The Polynomial-IOP Vision of the Latest MPCitH Frameworks for
Signature Schemes. Post-Quantum Algebraic Cryptography - Workshop 2, IHP.

2024-11-08. Recording available online.

Prover Verifier

I know such that

where is a public degree- polynomial.

w1, …, wn

f(w1, …, wn) = 0

f 2
Prove it!

High-Level Idea of MQOM v2

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)
② Commit the polynomials P0, P1, …, Pn

High-Level Idea of MQOM v2

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)
X ⋅ Q(X) = X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

② Commit the polynomials P0, P1, …, Pn

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)
X ⋅ Q(X) = X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

0 ⋅ P0(0) + f(P1(0), …, Pn(0)) = 0 + f(w1, …, wn) = 0

Well-defined!

② Commit the polynomials P0, P1, …, Pn

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)
X ⋅ Q(X) = X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

⑤ Reveal the evaluation for all . vi := Pi(r) i v0, v1, …, vn

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽
④

② Commit the polynomials P0, P1, …, Pn

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)
X ⋅ Q(X) = X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

⑤ Reveal the evaluation for all . vi := Pi(r) i
 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = r ⋅ v0 + f (v1, …, vn)

④

⑥

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

Verifier

① For all , choose a degree- polynomial
. We have

.

Choose a degree- polynomial

i 1
Pi(X)

f (P1(0), …, Pn(0)) ≠ 0

1 P0(X)
Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial . We know that Q(X)
X ⋅ Q(X) ≠ X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

⑤ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = r ⋅ v0 + f (v1, …, vn)

④

⑥

Soundness Analysis

Malicious Prover 😈

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn
 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

Verifier

① For all , choose a degree- polynomial
. We have

.

Choose a degree- polynomial

i 1
Pi(X)

f (P1(0), …, Pn(0)) ≠ 0

1 P0(X)
Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial . We know that Q(X)
X ⋅ Q(X) ≠ X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

⑤ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = r ⋅ v0 + f (v1, …, vn)

④

⑥

Soundness Analysis

= 0 ≠ 0

Evaluation into 0

Malicious Prover 😈

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn
 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

Verifier

① For all , choose a degree- polynomial
. We have

.

Choose a degree- polynomial

i 1
Pi(X)

f (P1(0), …, Pn(0)) ≠ 0

1 P0(X)
Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial . We know that Q(X)
X ⋅ Q(X) ≠ X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

⑤ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = r ⋅ v0 + f (v1, …, vn)

④

⑥

Soundness Analysis

Malicious Prover 😈

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn
 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

Malicious Prover 😈 Verifier

① For all , choose a degree- polynomial
. We have

.

Choose a degree- polynomial

i 1
Pi(X)

f (P1(0), …, Pn(0)) ≠ 0

1 P0(X)
Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial . We know that Q(X)
X ⋅ Q(X) ≠ X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

⑤ Reveal the evaluation for all . vi := Pi(r) i v0, v1, …, vn

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = r ⋅ v0 + f (v1, …, vn)

④

⑥

Soundness Analysis

Schwartz-Zippel Lemma: Let be the non-zero degree- polynomial
defined as

We have

.

D 2

D := X ⋅ Q(X) − X ⋅ P0(X) − f(P1(X), …, Pn(X))

Pr[verification passes] = Pr [D(r) = 0 ∣ r ←$ S] ≤
2

|S |

② Commit the polynomials P0, P1, …, Pn

 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

Prover

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)
X ⋅ Q(X) = X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

⑤ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = r ⋅ v0 + f (v1, …, vn)

④

⑥

Zero-Knowledge Analysis

Verifier 👀

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn
 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

④

 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

② Commit the polynomials P0, P1, …, Pn

Prover

Sample a random degree-
 polynomial

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)
X ⋅ Q(X) = X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

⑤ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = r ⋅ v0 + f (v1, …, vn)

⑥

Zero-Knowledge Analysis

Verifier 👀

Revealing an evaluation of
leaks no information about .

Pi(X)
wi

① For all , sample a random degree-
polynomial such that

i 1
Pi(X) Pi(0) = wi

v0, v1, …, vn

v0, v1, …, vn

Prover

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)
X ⋅ Q(X) = X ⋅ P0(X) + f (P1(X), …, Pn(X))

Q③

⑤ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = r ⋅ v0 + f (v1, …, vn)

④

⑥

Zero-Knowledge Analysis

Verifier 👀

Revealing leaks no information
about , thanks to .

Q(X)
wi P0(X)

Sample a random degree-
 polynomial

1
P0(X)

① For all , sample a random degree-
polynomial such that

i 1
Pi(X) Pi(0) = wi

② Commit the polynomials P0, P1, …, Pn

 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

Prover Verifier

Prove it!

Soundness Error =
2

|S |
Probability that a malicious prover

can convince the verifier.

I know such that

where is a public degree- polynomial.

w1, …, wn

f(w1, …, wn) = 0

f 2

High-Level Idea of MQOM v2

Prover Verifier

I know such that

where are public degree- polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm 2
Prove it!

High-Level Idea of MQOM v2

① For all , sample a random degree-
polynomial such that

Sample random degree-
 polynomials

i 1
Pi(X) Pi(0) = wi

m 1
P0(X) = (P0,1(X), …, P0,m(X))

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomials
 such that

Q1(X), …, Qm(X)

X ⋅ Q1(X) = X ⋅ P0,1(X) + f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = X ⋅ P0,m(X) + fm(P1(X), …, Pn(X))
Q1, …, Qm

③

⑤ Reveal the evaluation for all . vi := Pi(r) i
 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

r

 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q1(r) = r ⋅ v0,1 + f1(v1, …, vn)

⋮
r ⋅ Qm(r) = r ⋅ v0,m + fm(v1, …, vn)

④

⑥

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

Prover

① For all , sample a random degree-
polynomial such that

Sample random degree-
 polynomials

i 1
Pi(X) Pi(0) = wi

m 1
P0(X) = (P0,1(X), …, P0,m(X))

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomials
 such that

Q1(X), …, Qm(X)

X ⋅ Q1(X) = X ⋅ P0,1(X) + f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = X ⋅ P0,m(X) + fm(P1(X), …, Pn(X))
Q1, …, Qm

③

⑤ Reveal the evaluation for all . vi := Pi(r) i
 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

r

 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q1(r) = r ⋅ v0,1 + f1(v1, …, vn)

⋮
r ⋅ Qm(r) = r ⋅ v0,m + fm(v1, …, vn)

④

⑥

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

ProverSigma variant (3r) of MQOM v2

① For all , sample a random degree-
polynomial such that

Sample random degree-
 polynomials

i 1
Pi(X) Pi(0) = wi

m 1
P0(X) = (P0,1(X), …, P0,m(X))

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomials
 such that

Q1(X), …, Qm(X)

X ⋅ Q1(X) = X ⋅ P0,1(X) + f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = X ⋅ P0,m(X) + fm(P1(X), …, Pn(X))
Q1, …, Qm

③

⑤ Reveal the evaluation for all . vi := Pi(r) i
 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

r

 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q1(r) = r ⋅ v0,1 + f1(v1, …, vn)

⋮
r ⋅ Qm(r) = r ⋅ v0,m + fm(v1, …, vn)

④

⑥

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

Prover

A bit costly!

① For all , sample a random degree-
polynomial such that

Sample random degree-
 polynomials

i 1
Pi(X) Pi(0) = wi

m 1
P0(X) = (P0,1(X), …, P0,m(X))

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomials
 such that

Q1(X), …, Qm(X)

X ⋅ Q1(X) = X ⋅ P0,1(X) + f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = X ⋅ P0,m(X) + fm(P1(X), …, Pn(X))
Q1, …, Qm

③

⑤ Reveal the evaluation for all . vi := Pi(r) i
 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

r

 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q1(r) = r ⋅ v0,1 + f1(v1, …, vn)

⋮
r ⋅ Qm(r) = r ⋅ v0,m + fm(v1, …, vn)

④

⑥

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

Prover

A bit costly!
Solution: batching

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

② Commit the polynomials P0, P1, …, Pn

④

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)

X ⋅ Q(X) = X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

② Commit the polynomials P0, P1, …, Pn
③ Choose random coefficients

γ1, …, γm ←$ 𝔽γ1, …, γm

④

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)

X ⋅ Q(X) = X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

② Commit the polynomials P0, P1, …, Pn
③ Choose random coefficients

γ1, …, γm ←$ 𝔽γ1, …, γm

Well-defined!
m

∑
j=1

γj ⋅ fj(P1(0), …, Pn(0)) =
m

∑
j=1

γj ⋅ fj(w1, …, wn)

=
m

∑
j=1

γj ⋅ 0 = 0

⑤

④

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)

X ⋅ Q(X) = X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

③ Choose random coefficients

γ1, …, γm ←$ 𝔽γ1, …, γm

 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

⑤

④

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)

X ⋅ Q(X) = X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that

r ⋅ Q(r) = r ⋅ v0 +
m

∑
j=1

γj ⋅ fj(v1, …, vn)

⑦

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

③ Choose random coefficients

γ1, …, γm ←$ 𝔽γ1, …, γm

 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

⑤

④

Prover Verifier

① For all , choose a degree- polynomial
. There exists s.t.

.

Sample a random degree-
 polynomial

i 1
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0
1

P0(X) Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)

X ⋅ Q(X) ≠ X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that

r ⋅ Q(r) = r ⋅ v0 +
m

∑
j=1

γj ⋅ fj(v1, …, vn)

⑦

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

③ Choose random coefficients

γ1, …, γm ←$ 𝔽γ1, …, γm

Soundness Analysis

 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

⑤

④

Prover Verifier

① For all , choose a degree- polynomial
. There exists s.t.

.

Sample a random degree-
 polynomial

i 1
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0
1

P0(X) Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)

X ⋅ Q(X) ≠ X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that

r ⋅ Q(r) = r ⋅ v0 +
m

∑
j=1

γj ⋅ fj(v1, …, vn)

⑦

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

③ Choose random coefficients

γ1, …, γm ←$ 𝔽γ1, …, γm

Soundness Analysis

It is an inequality with high probability over the
randomness of , since we haveγ1, …, γm

m

∑
j=1

γj ⋅ fj(P1(0), …, Pn(0)) ≠ 0

 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

⑤

④

Prover Verifier

① For all , choose a degree- polynomial
. There exists s.t.

.

Sample a random degree-
 polynomial

i 1
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0
1

P0(X) Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)

X ⋅ Q(X) ≠ X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that

r ⋅ Q(r) = r ⋅ v0 +
m

∑
j=1

γj ⋅ fj(v1, …, vn)

⑦

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

③ Choose random coefficients

γ1, …, γm ←$ 𝔽γ1, …, γm

Soundness Analysis

Schwartz-Zippel Lemma: Since it is a degree- relation,

.

2

Pr[verification passes] ≤
2

|S |

 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

⑤

④

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)

X ⋅ Q(X) = X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that

r ⋅ Q(r) = r ⋅ v0 +
m

∑
j=1

γj ⋅ fj(v1, …, vn)

⑦

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

③ Choose random coefficients

γ1, …, γm ←$ 𝔽γ1, …, γm

5-round variant (5r) of MQOM v2

 Check that
 are consistent with the
 commitment.

v0, v1, …, vn

⑤

④

Prover Verifier

① For all , sample a random degree-
polynomial such that

Sample a random degree-
 polynomial

i 1
Pi(X) Pi(0) = wi

1
P0(X)

Com(P0, P1, …, Pn)

High-Level Idea of MQOM v2

 Reveal the polynomial such that Q(X)

X ⋅ Q(X) = X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i

r
 Choose a random evaluation
 point r ∈ S ⊂ 𝔽

 Check that

r ⋅ Q(r) = r ⋅ v0 +
m

∑
j=1

γj ⋅ fj(v1, …, vn)

⑦

② Commit the polynomials P0, P1, …, Pn

v0, v1, …, vn

③ Choose random coefficients

γ1, …, γm ←$ 𝔽γ1, …, γm

How to commit to polynomials?

① VOLEitH / TCitH-GGM

② Degree-enforcing commitment

(TCitH-MT)

③ Merkle Trees with

Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[BBD+23] Baum, Braun, Delpech, Klooß,
Orsini, Roy, Scholl. Publicly Verifiable Zero-
Knowledge and Post-Quantum Signatures
From VOLE-in-the-Head. Crypto 2023.

[FR23] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. ePrint
2023/1573.

Committing to a Polynomial using a Seed Tree

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial .

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P

Committing to a Polynomial using a Seed Tree

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Commitment:
We commit to each value

 independently.ri

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Commitment:
We commit to each value

 independently.ri

Opening :
Reveal all .

P(ei*)
{ri}i≠i*

P(ei*) = ∑
i≠i*

ri ⋅ Ri(ei*) + ri* ⋅ Ri*(ei*)

=0

= ∑
i≠i*

ri ⋅ Ri(ei*)

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Commitment:
We commit to each value

 independently.ri

Opening :
Reveal all .

P(ei*)
{ri}i≠i*

The opening leaks nothing
about , except .P P(ei*)

P(ei*) = ∑
i≠i*

ri ⋅ Ri(ei*) + ri* ⋅ Ri*(ei*)

=0

= ∑
i≠i*

ri ⋅ Ri(ei*)

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Commitment:
We commit to each value

 independently.ri

Opening :
Reveal all .

P(ei*)
{ri}i≠i*

🛠 Can be adapted to
any degree.

The opening leaks nothing
about , except .P P(ei*)

P(ei*) = ∑
i≠i*

ri ⋅ Ri(ei*) + ri* ⋅ Ri*(ei*)

=0

= ∑
i≠i*

ri ⋅ Ri(ei*)

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Commitment:
We commit to each value

 independently.ri

Opening :
Reveal all .

P(ei*)
{ri}i≠i*

🛠 Can be adapted to
any degree.

The opening leaks nothing
about , except .P P(ei*)

P(ei*) = ∑
i≠i*

ri ⋅ Ri(ei*) + ri* ⋅ Ri*(ei*)

=0

= ∑
i≠i*

ri ⋅ Ri(ei*)

Costly! 😰

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree

seed1 seed2 seed3 seedN−1 seedN

PR
G

PR
G

PR
G

PR
G

PR
G

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤) ← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

to be revealedi*

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

to be revealedi*

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

r2r1 r3 rN−1 rN…

Committing to a Polynomial using a Seed Tree

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

to be revealedi*

sibling path
→ seedslog(N)

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree

Committing to a Polynomial using a Seed Tree

🤔

Complexity in to have a soundness error of (degree- polynomials).

How to have a negligible soundness error?

O(N)
2
N

1

Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in .N ≥ 2λ O(2λ)

🤔

Complexity in to have a soundness error of (degree- polynomials).

How to have a negligible soundness error?

O(N)
2
N

1

Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in .

2. TCitH-GGM Approach. Taking small (e.g.) and repeating the

protocol times. Soundness error of .

N ≥ 2λ O(2λ)

N N = 256

τ (2
N)

τ

Complexity in to have a soundness error of (degree- polynomials).

How to have a negligible soundness error?

O(N)
2
N

1

🤔

Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in .

2. TCitH-GGM Approach. Taking small (e.g.) and repeating the

protocol times. Soundness error of .

3. VOLEitH Approach. Embed polynomials over into a unique

polynomial over , for which we will be able to open evaluations.

Soundness error of .

N ≥ 2λ O(2λ)

N N = 256

τ (2
N)

τ

τ 𝔽

𝔽 Nτ

2
Nτ

🤔

Complexity in to have a soundness error of (degree- polynomials).

How to have a negligible soundness error?

O(N)
2
N

1

Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in .

2. TCitH-GGM Approach. Taking small (e.g.) and repeating the

protocol times. Soundness error of .

3. VOLEitH Approach. Embed polynomials over into a unique

polynomial over , for which we will be able to open evaluations.

Soundness error of .

N ≥ 2λ O(2λ)

N N = 256

τ (2
N)

τ

τ 𝔽

𝔽 Nτ

2
Nτ

🤔

Complexity in to have a soundness error of (degree- polynomials).

How to have a negligible soundness error?

O(N)
2
N

1

MQOM v2
RYDE v2

Mirath

FAEST
SDitH

Building MQOM v2

Prover Verifier

I know such that

where are public degree- polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm 2 Prove it!

Building MQOM v2

Prover Verifier

I know such that

where are public degree- polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm 2 Prove it!

Signature Scheme

Fiat-Shamir
Transformation

Building MQOM v2

Benchmark MQOM v2

MQOMv2 Instance PK Size Sizes (R3) Sizes (R5) Sig. / Verif. Running times

NIST I

gf2
Short

52 B
2 868 B 2 820 B ≈ 18-20 Mcycles

Fast 3 212 B 3 144 B ≈ 9-10 Mcycles

gf256
Short

80 B
3 540 B 3 156 B ≈ 12-15 Mcycles

Fast 4 164 B 3 620 B ≈ 3-4 Mcycles

NIST V

gf2
Short

104 B
11 764 B 11 564 B ≈ 133-143 Mcycles

Fast 13 412 B 13 124 B ≈ 85-88 Mcycles

gf256
Short

160 B
14 564 B 12 964 B ≈ 56-61 Mcycles

Fast 17 444 B 15 140 B ≈ 14-15 Mcycles

Benchmark run over an AMD Ryzen Threadripper PRO 7995WX (an AVX-512+GFNI machine)
for the implementation release v2.0.1 (https://github.com/mqom/mqom-v2).

Currently, the existing implementations of MQOM have not been fully optimized, and their benchmarks
do not accurately represent the computational performance of the MQOM signature scheme.⚠

https://github.com/mqom/mqom-v2

Comparison (MPCitH)
NIST Submission

Security Assumptions Candidate Name Sizes

AES Block cipher
Secret Key FAEST 4.5-5.9 KB

Fixed Key (EM) FAEST-EM 3.9-5.1 KB

MinRank
Field GF(2)

Mirath
2.9-3.5 KB

Field GF(16) 3.1-3.7 KB

Multivariate Quadratic
Field GF(2)

MQOM
2.8-3.2 KB

Field GF(256) 3.1-4.1 KB

Permuted Kernel
t=3

PERK
6.3-8.4 KB

t=5 5.8-8.0 KB

Rank Syndrome Decoding RYDE 3.0-3.6 KB

Syndrome Decoding SDitH 3.7-4.5 KB

Conclusion

MQOM v2

- Among the shortest MPCitH signature schemes:

• Since all the other one-way functions as expressed as a structured
(quadratic or cubic) multivariate system, it leads to larger systems
for a given field, and so the MQ-based signature is the more
efficient (in terms of communication).

- Among the simplest MPCitH signature schemes:

• Do not need to arithmetize the one-way function as a multivariate
system.

• Rely on the TCitH framework

- MQOM v2 is the only NIST MPCitH-based candidate that has a
variant with 3 rounds (the other schemes have 5 rounds or 7 rounds).

What’s next?

- Implementation effort for the new versions of the MPCitH-based
schemes

- Fine-tuning of the parameters for trade-offs

- Many possible optimizations

• Use of Rijndael-based ciphers (AES128, Rijndael-256-256, …)
for seed derivation and seed commitments

• Possible choices for tree derivation

• …

What’s next?

Thank you for your attention.

- Implementation effort for the new versions of the MPCitH-based
schemes

- Fine-tuning of the parameters for trade-offs

- Many possible optimizations

• Use of Rijndael-based ciphers (AES128, Rijndael-256-256, …)
for seed derivation and seed commitments

• Possible choices for tree derivation

• …

