MQOM: MQ on my Mind — Version 2 —

Ryad Benadjila, Charles Bouillaguet <u>Thibauld Feneuil</u>, Matthieu Rivain

PEPR PQ TLS

March 13, 2025, Inria Paris

- Round-2 Updates for MPCitH-based schemes
- High-level idea of MQOM v2
- Benchmarks of MQOM v2
- Conclusion

- 6 MPCitH-based schemes have been selected for round 2: FAEST, Mirath, MQOM, PERK, RYDE, SDitH
- Two new MPCitH frameworks since the previous NIST deadline:
 VOLE-in-the-Head (summer 2023) and TC-in-the-Head (fall 2023)

- 6 MPCitH-based schemes have been selected for round 2: FAEST, Mirath, MQOM, PERK, RYDE, SDitH
- Two new MPCitH frameworks since the previous NIST deadline:
 VOLE-in-the-Head (summer 2023) and TC-in-the-Head (fall 2023)
- Round-1 **FAEST** was relying on the **VOLEitH framework**, still the case for the round-2 version.
- Round-2 **SDitH** now relies on the **VOLEitH framework**.
- Round-2 versions of Mirath, MQOM, and RYDE now rely on the TCitH framework.
- Round-1 **PERK** was relying on the **shared-permutation framework**, still the case for the round-2 version.

- The both frameworks are **interchangeable**, several schemes mention a variant with the other framework.

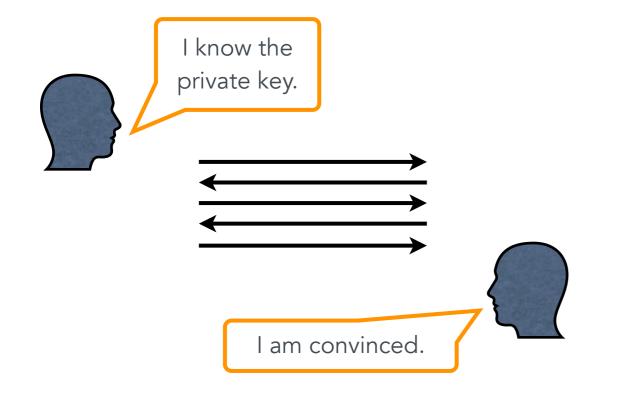
- The both frameworks are **interchangeable**, several schemes mention a variant with the other framework.
- Mirath, MQOM, RYDE and SDitH uses the **PIOP formalism** to describe their scheme, instead of a sharing-based formalism (TCitH) or a VOLE-based formalism (VOLEitH).

- The both frameworks are **interchangeable**, several schemes mention a variant with the other framework.
- Mirath, MQOM, RYDE and SDitH uses the **PIOP formalism** to describe their scheme, instead of a sharing-based formalism (TCitH) or a VOLE-based formalism (VOLEitH).
- FAEST, Mirath, MQOM, RYDE and SDitH now primarily utilize **Rijndaelbased** (AES-128, ...) as symmetric primitives (for pseudorandom generator and commitment), shifting away from Keccak-based hashes to improve the scheme's speed.

- The both frameworks are **interchangeable**, several schemes mention a variant with the other framework.
- Mirath, MQOM, RYDE and SDitH uses the **PIOP formalism** to describe their scheme, instead of a sharing-based formalism (TCitH) or a VOLE-based formalism (VOLEitH).
- FAEST, Mirath, MQOM, RYDE and SDitH now primarily utilize **Rijndaelbased** (AES-128, ...) as symmetric primitives (for pseudorandom generator and commitment), shifting away from Keccak-based hashes to improve the scheme's speed.
- MQOM and SDitH use only **binary fields**, moving away from prime fields.

- The both frameworks are **interchangeable**, several schemes mention a variant with the other framework.
- Mirath, MQOM, RYDE and SDitH uses the **PIOP formalism** to describe their scheme, instead of a sharing-based formalism (TCitH) or a VOLE-based formalism (VOLEitH).
- FAEST, Mirath, MQOM, RYDE and SDitH now primarily utilize **Rijndaelbased** (AES-128, ...) as symmetric primitives (for pseudorandom generator and commitment), shifting away from Keccak-based hashes to improve the scheme's speed.
- MQOM and SDitH use only **binary fields**, moving away from prime fields.
- While the round-1 versions of those schemes have sizes between 5.5 KB and 10.5 KB for the first security level, the round-2 versions have sizes
 between 2.8 KB and 5.9 KB, with keys of several hundred bytes.

From an identification scheme



Multivariate Quadratic Problem

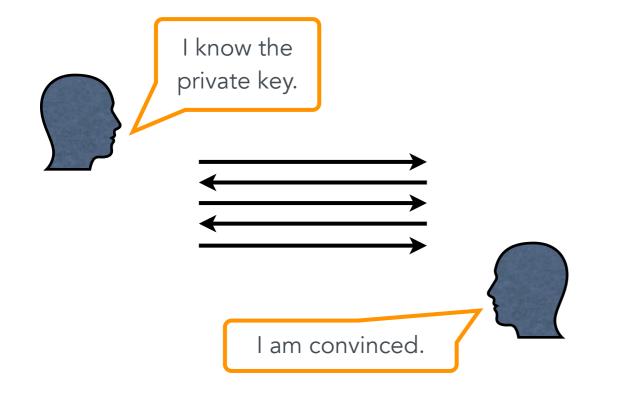
From *m* quadratic multivariate polynomials f_1, \ldots, f_m , find $x_1, \ldots, x_n \in \mathbb{F}_q$ such that

$$\begin{cases} f_1(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) &= 0, \\ \vdots \\ f_m(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) &= 0. \end{cases}$$

For example (n = m = 2), find $x, y \in \mathbb{F}_q$ such that

$$\begin{cases} x^2 - y^2 + 2x + 5 = 0\\ 4x^2 - x - 3y - 1 = 0. \end{cases}$$

From an identification scheme



<u>Multivariate Quadratic Problem</u>

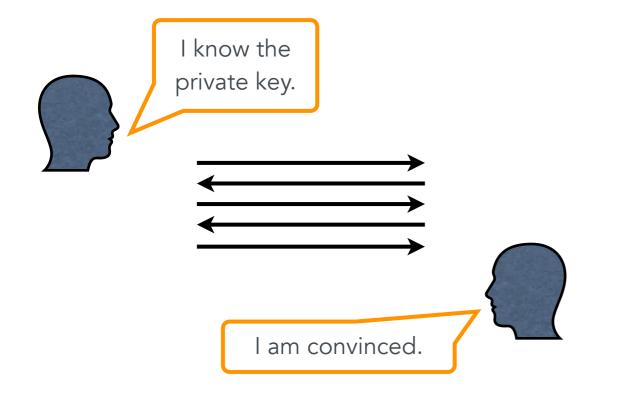
From *m* quadratic multivariate polynomials f_1, \ldots, f_m , find $x_1, \ldots, x_n \in \mathbb{F}_q$ such that

$$\begin{cases} f_1(\mathbf{x}_1, \dots, \mathbf{x}_n) &= 0, \\ \vdots \\ f_m(\mathbf{x}_1, \dots, \mathbf{x}_n) &= 0. \end{cases}$$

<u>Public Key</u>: a random multivariate quadratic system $(f_1, ..., f_m)$

<u>Secret Key</u>: the MQ solution x_1, \ldots, x_n

From an identification scheme



<u>Multivariate Quadratic Problem</u>

From *m* quadratic multivariate polynomials f_1, \ldots, f_m , find $x_1, \ldots, x_n \in \mathbb{F}_q$ such that

$$\begin{cases} f_1(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) &= 0, \\ \vdots \\ f_m(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) &= 0. \end{cases}$$

<u>Public Key</u>: a random multivariate quadratic system $(f_1, ..., f_m)$

<u>Secret Key</u>: the MQ solution x_1, \ldots, x_n

<u>Used parameters</u>: n = m, over the field \mathbb{F}_2 or \mathbb{F}_{256} .

The TCitH and VOLEitH frameworks can be described with the PIOP formalism.

- Manipulated objects in TCitH: (Shamir's secret) sharings
- Manipulated objects in VOLEitH: **VOLE correlations**
- Manipulated objects in PIOP: **Polynomials**

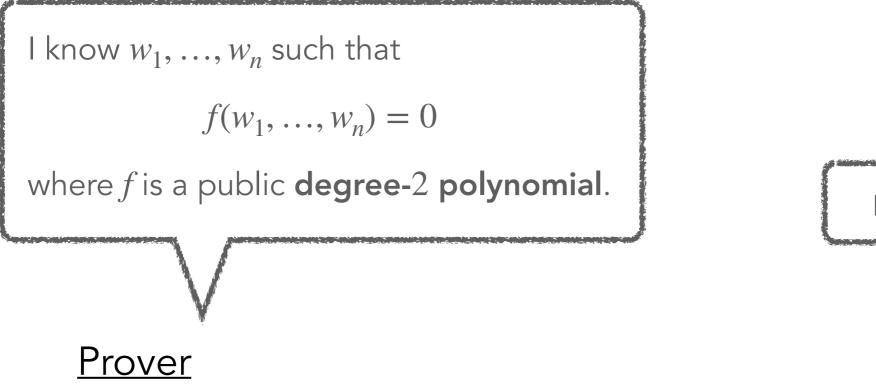
Lead to a description that **does not depend on MPC technologies**, leading to an **easier-to-understand** scheme for those who do not already know those two frameworks The TCitH and VOLEitH frameworks can be described with the PIOP formalism.

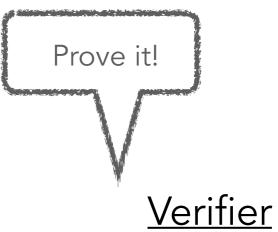
- Manipulated objects in TCitH: (Shamir's secret) sharings
- Manipulated objects in VOLEitH: **VOLE correlations**
- Manipulated objects in PIOP: **Polynomials**

Lead to a description that **does not depend on MPC technologies**, leading to an **easier-to-understand** scheme for those who do not already know those two frameworks

For more details, see the talk:

Feneuil. **The Polynomial-IOP Vision of the Latest MPCitH Frameworks for Signature Schemes**. Post-Quantum Algebraic Cryptography - Workshop 2, IHP. 2024-11-08. Recording available online.





① For all *i*, sample a random degree-1 polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree-1 polynomial $P_0(X)$

② Commit the polynomials $P_0, P_1, ..., P_n$

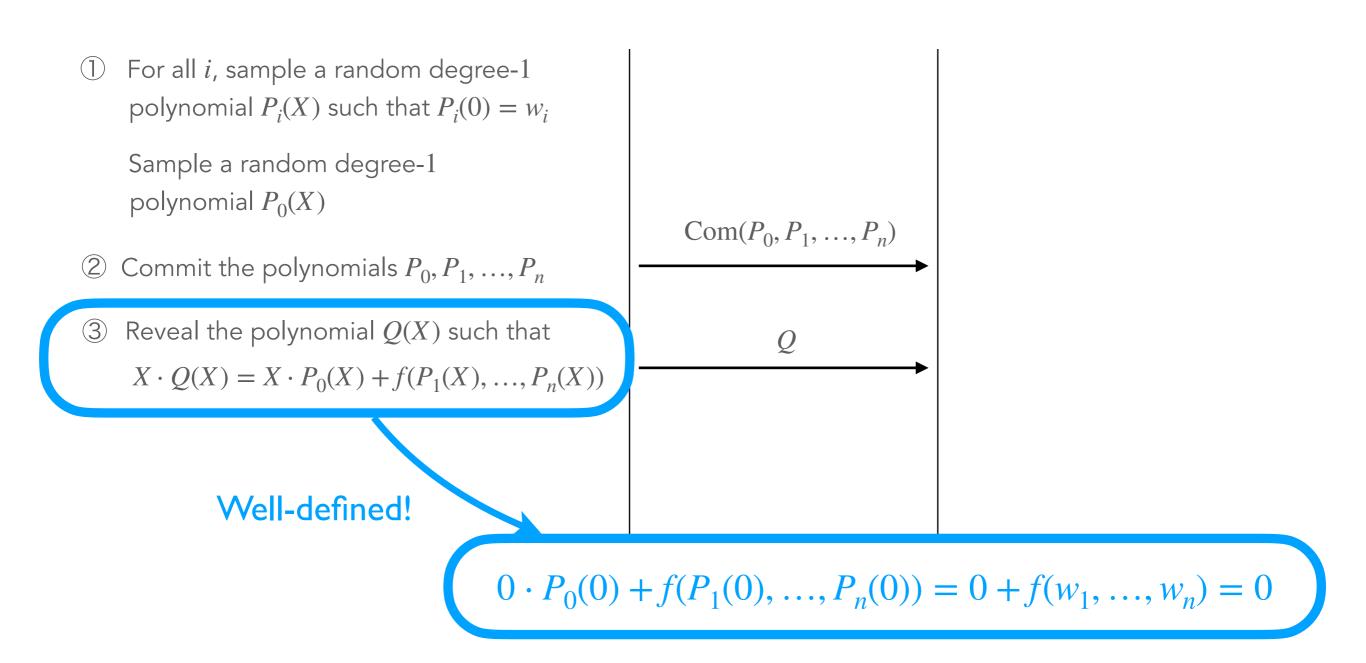
$$Com(P_0, P_1, ..., P_n)$$

1 For all *i*, sample a random degree-1 polynomial $P_i(X)$ such that $P_i(0) = w_i$ Sample a random degree-1

Sample a random degree-1 polynomial $P_0(X)$

- ② Commit the polynomials $P_0, P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), ..., P_n(X))$

$$Com(P_0, P_1, \dots, P_n)$$



<u>Prover</u>

① For all *i*, sample a random degree-1 polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree-1 polynomial $P_0(X)$

- ② Commit the polynomials $P_0, P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), ..., P_n(X))$

(5) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

$$Com(P_0, P_1, \dots, P_n)$$

$$Q$$

$$r$$

$$r$$

$$V_0, V_1, \dots, V_n$$

$$Q$$

$$Q$$

$$(4) Choose a range of the second se$$

① For all *i*, sample a random degree-1 polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree-1 polynomial $P_0(X)$

- ② Commit the polynomials $P_0, P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), ..., P_n(X))$

(5) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

$$Com(P_0, P_1, \dots, P_n)$$

$$Q$$

$$r$$

$$V_0, V_1, \dots, V_n$$

- (4) Choose a random evaluation point $r \in S \subset \mathbb{F}$
- ⁽⁶⁾ Check that $v_0, v_1, ..., v_n$ are consistent with the commitment.

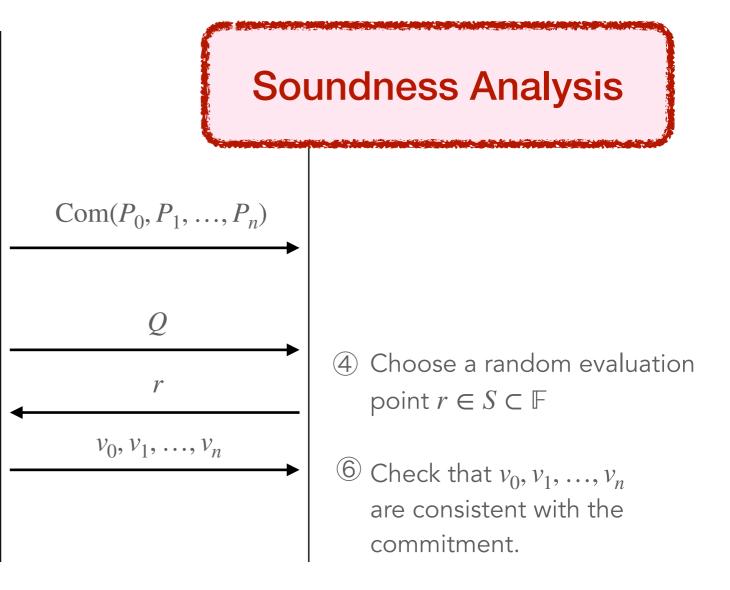
Check that $r \cdot Q(r) = r \cdot v_0 + f(v_1, \dots, v_n)$

1 For all *i*, choose a degree-1 polynomial $P_i(X)$. We have $f(P_1(0), ..., P_n(0)) \neq 0$.

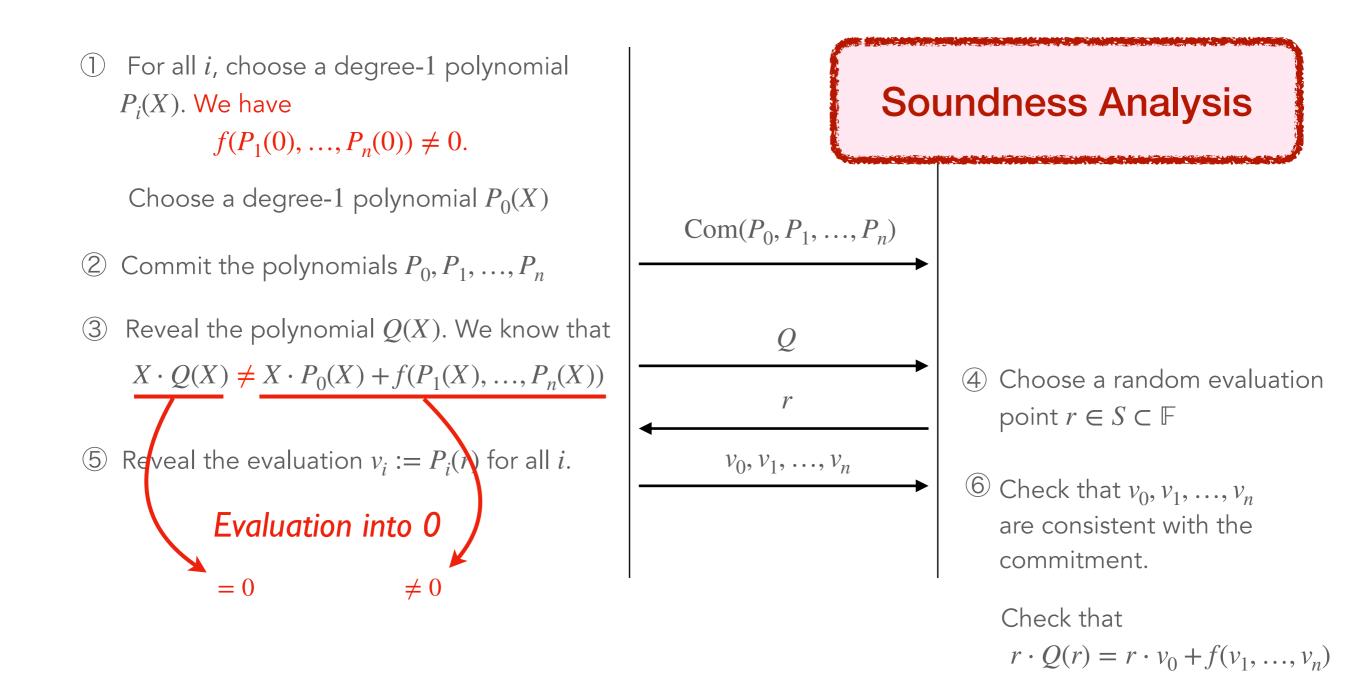
Choose a degree-1 polynomial $P_0(X)$

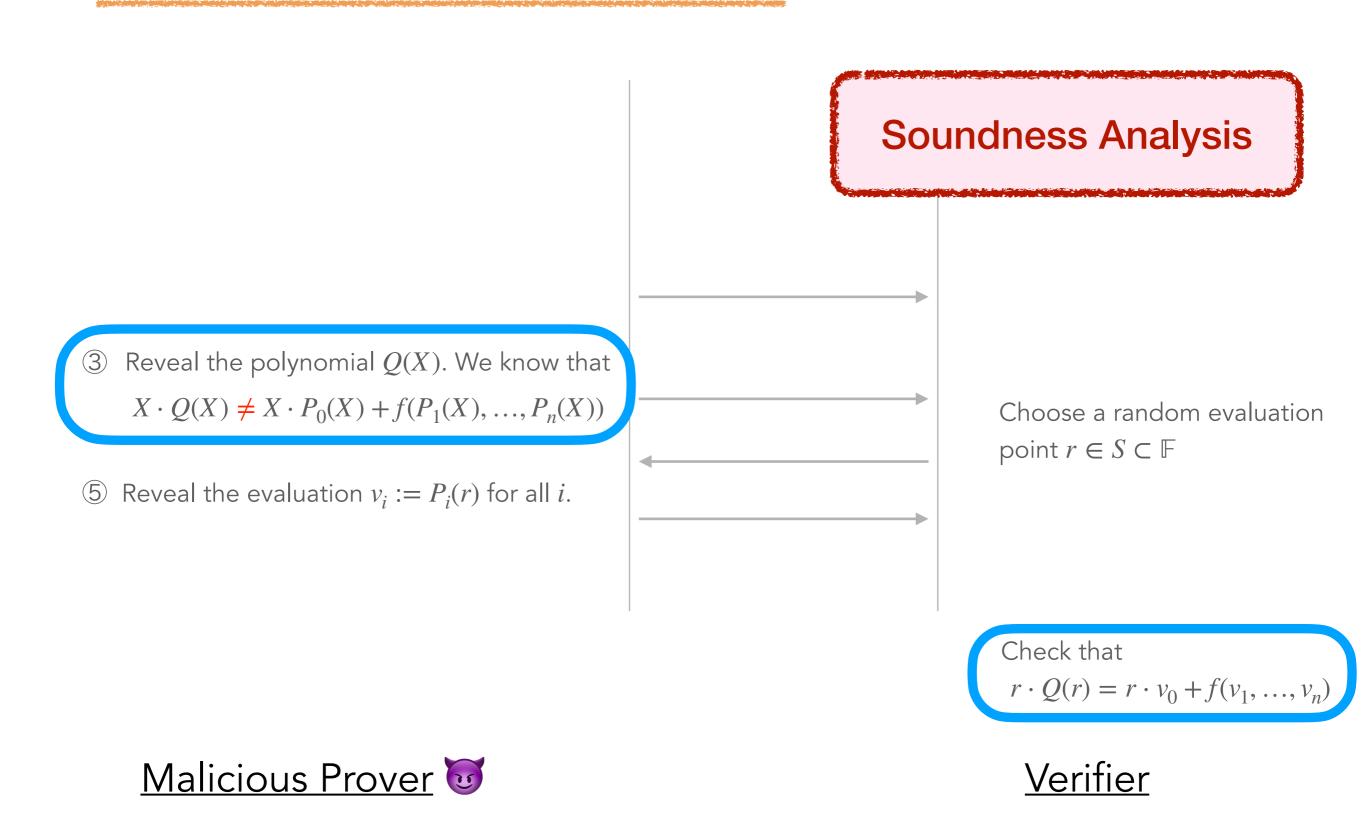
- ② Commit the polynomials $P_0, P_1, ..., P_n$
- ③ Reveal the polynomial Q(X). We know that $X \cdot Q(X) \neq X \cdot P_0(X) + f(P_1(X), ..., P_n(X))$

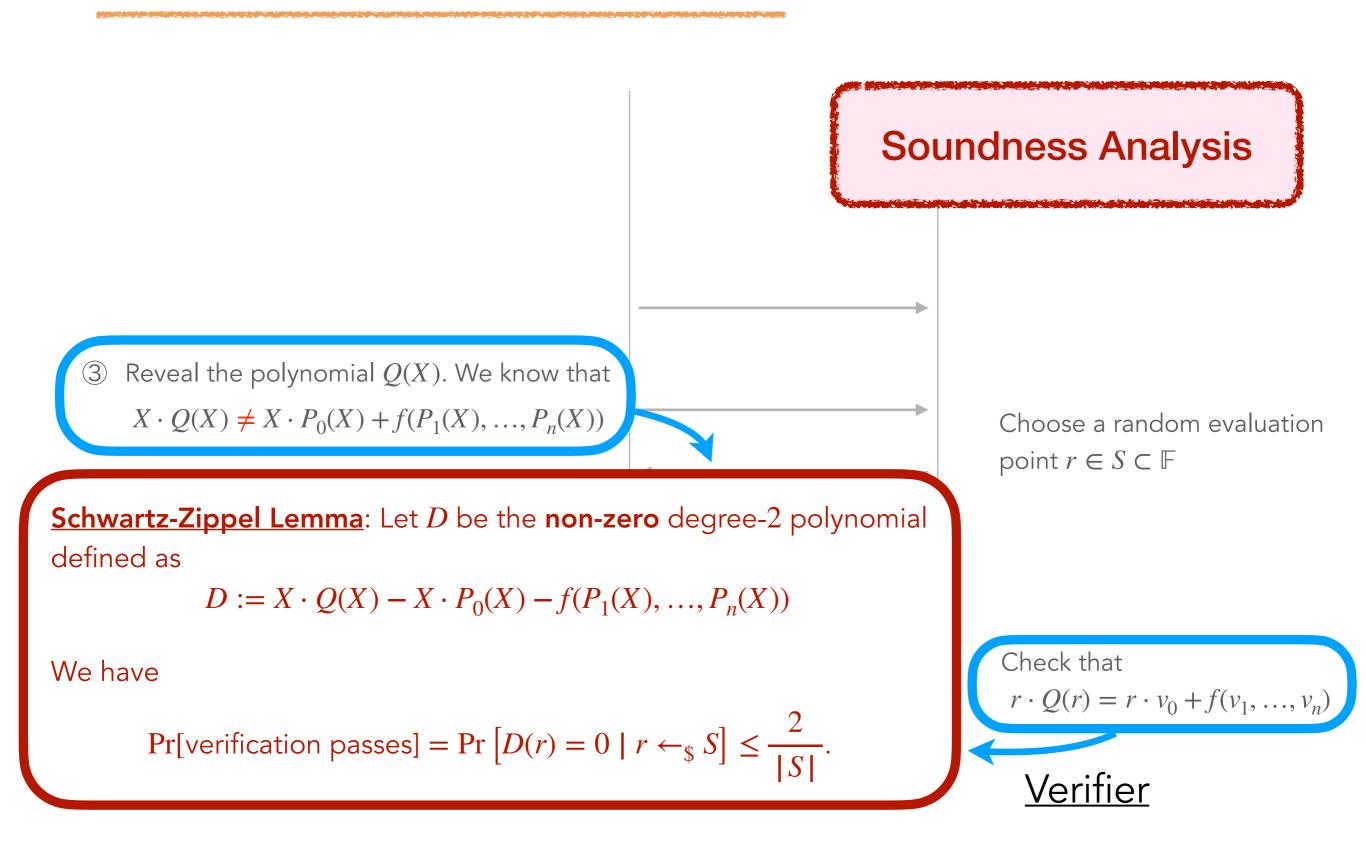
(5) Reveal the evaluation $v_i := P_i(r)$ for all *i*.



Check that $r \cdot Q(r) = r \cdot v_0 + f(v_1, \dots, v_n)$





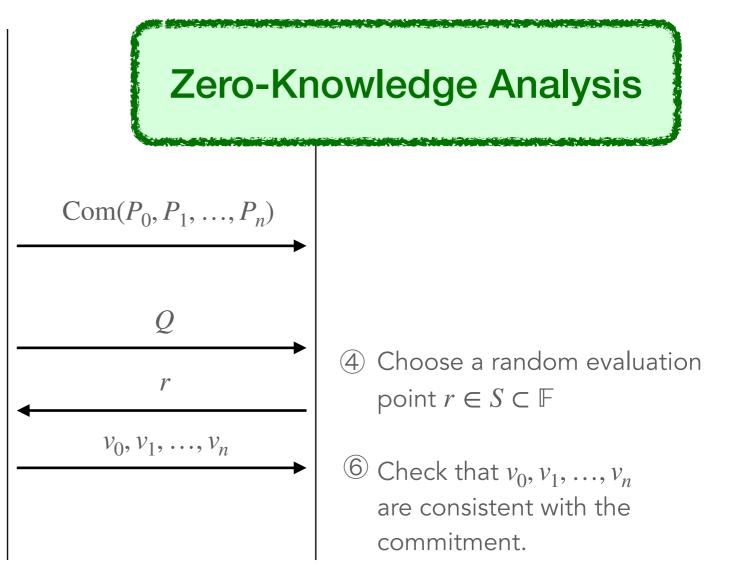


① For all *i*, sample a random degree-1 polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree-1 polynomial $P_0(X)$

- ② Commit the polynomials $P_0, P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), ..., P_n(X))$

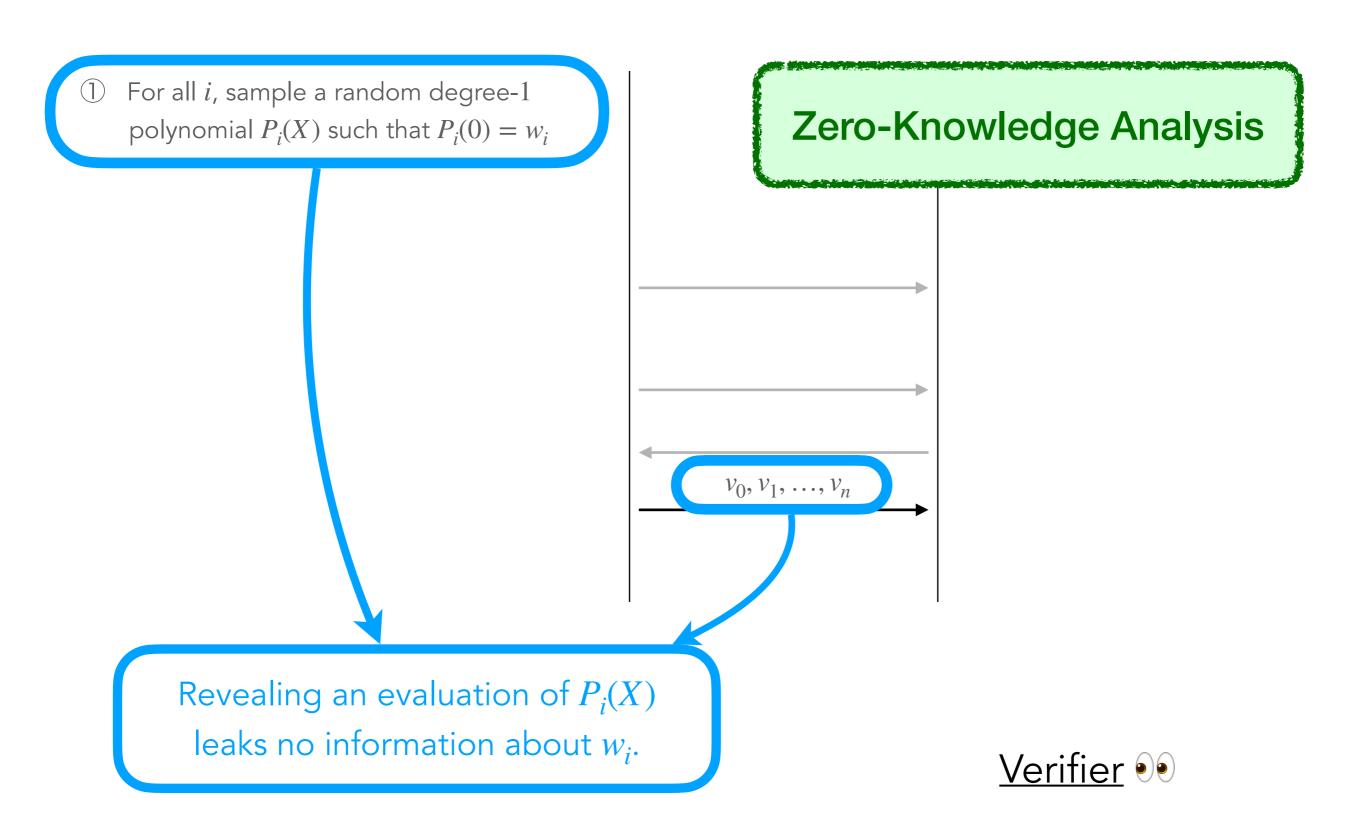
(5) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

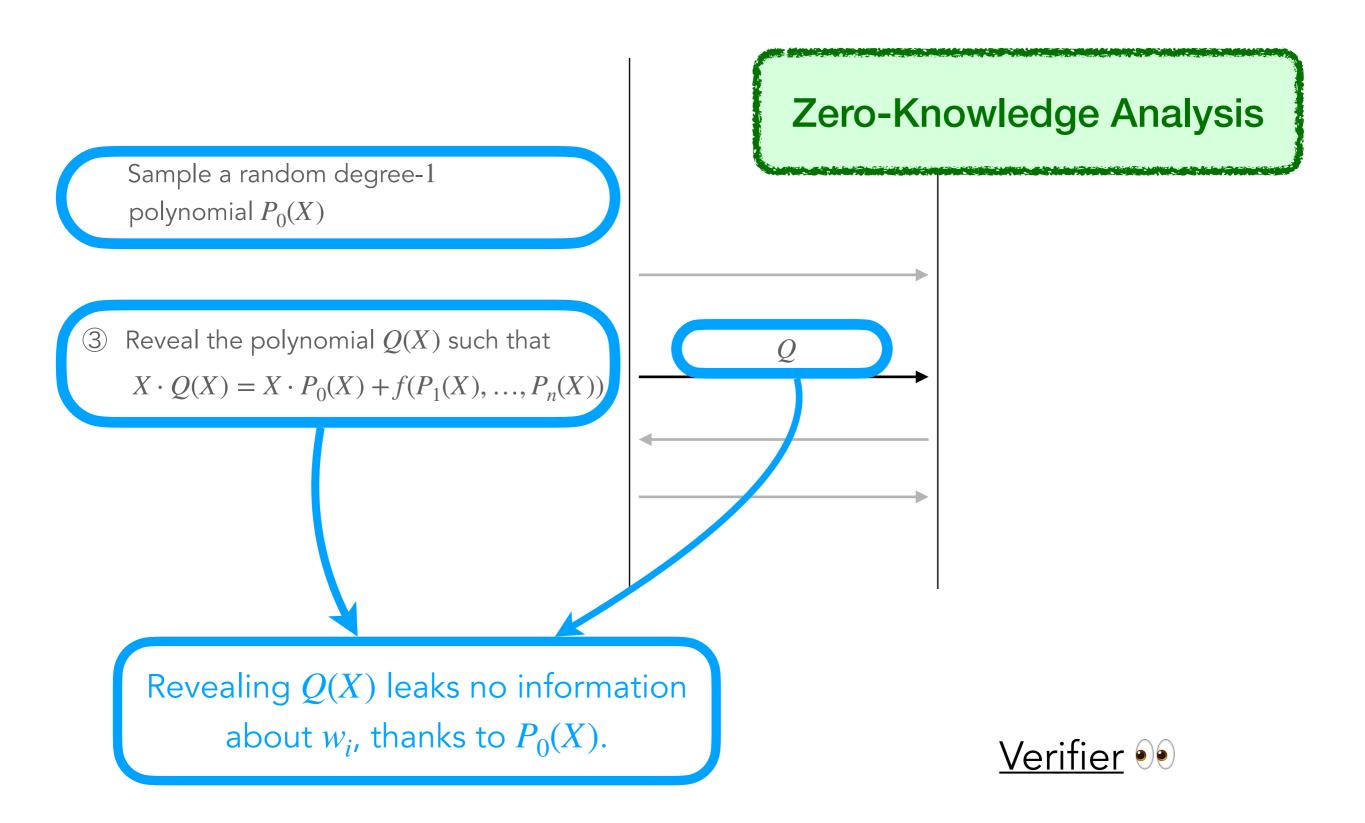


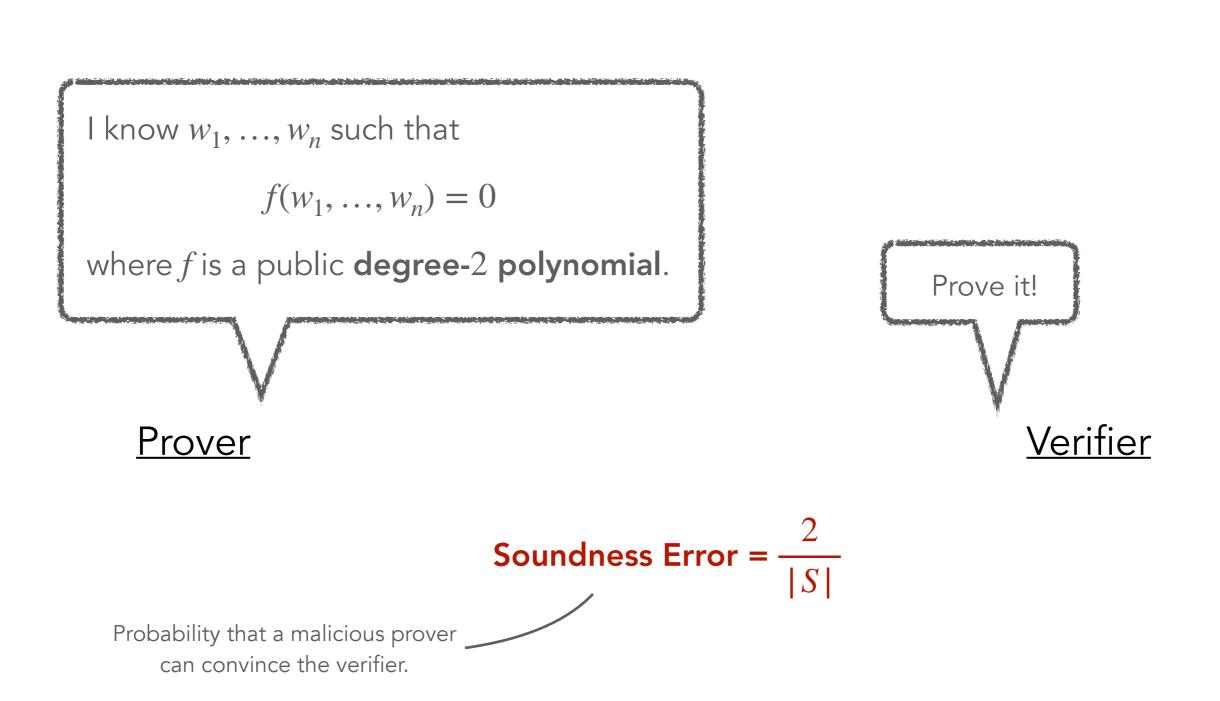
Check that $r \cdot Q(r) = r \cdot v_0 + f(v_1, \dots, v_n)$

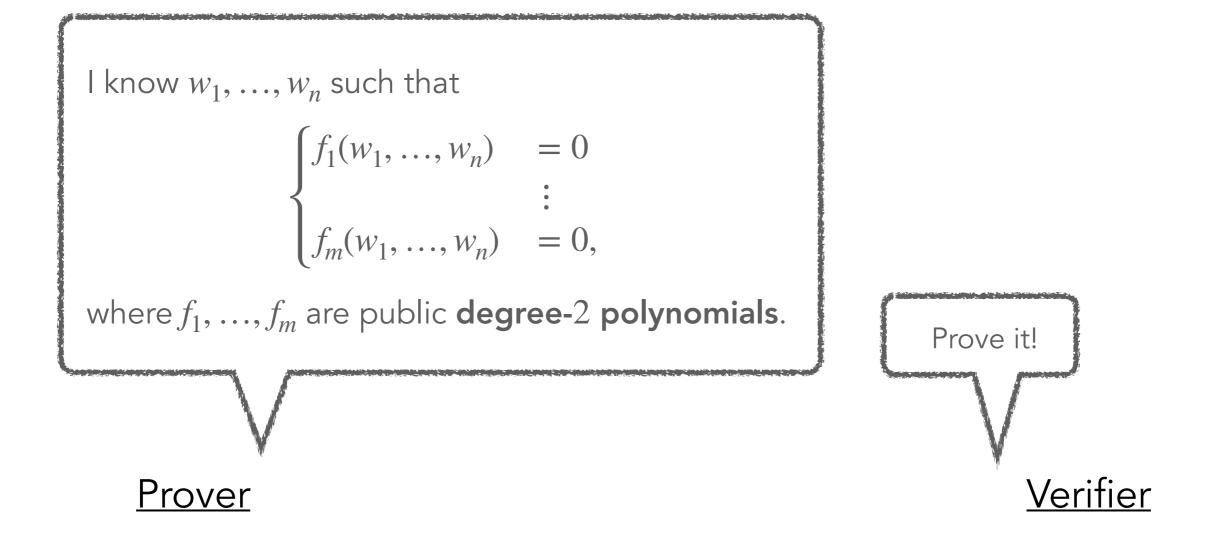
<u>Verifier</u> ••

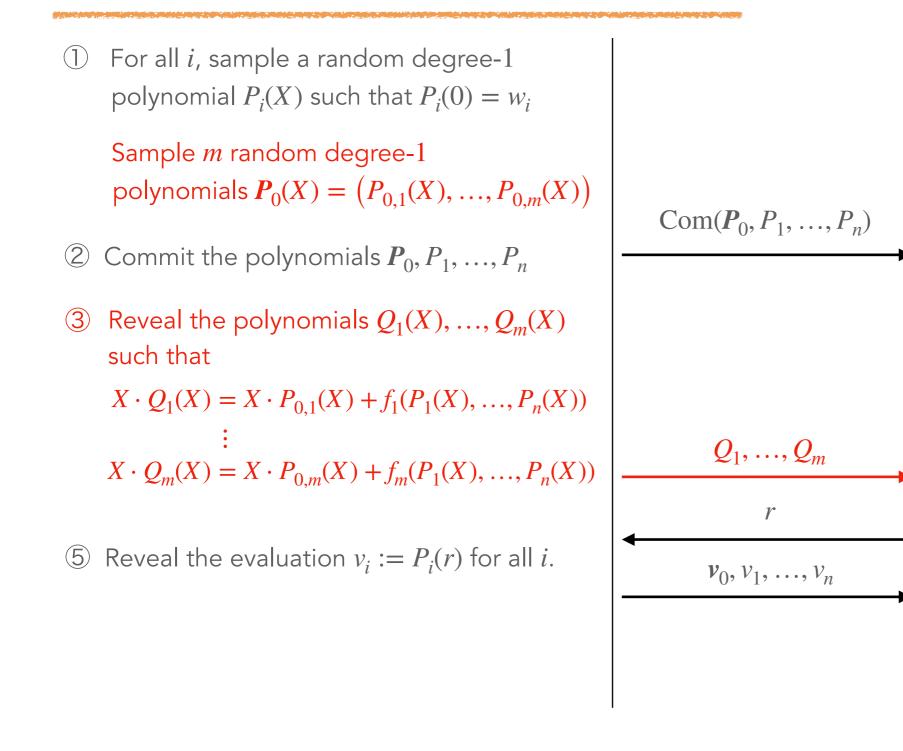
<u>Prover</u>





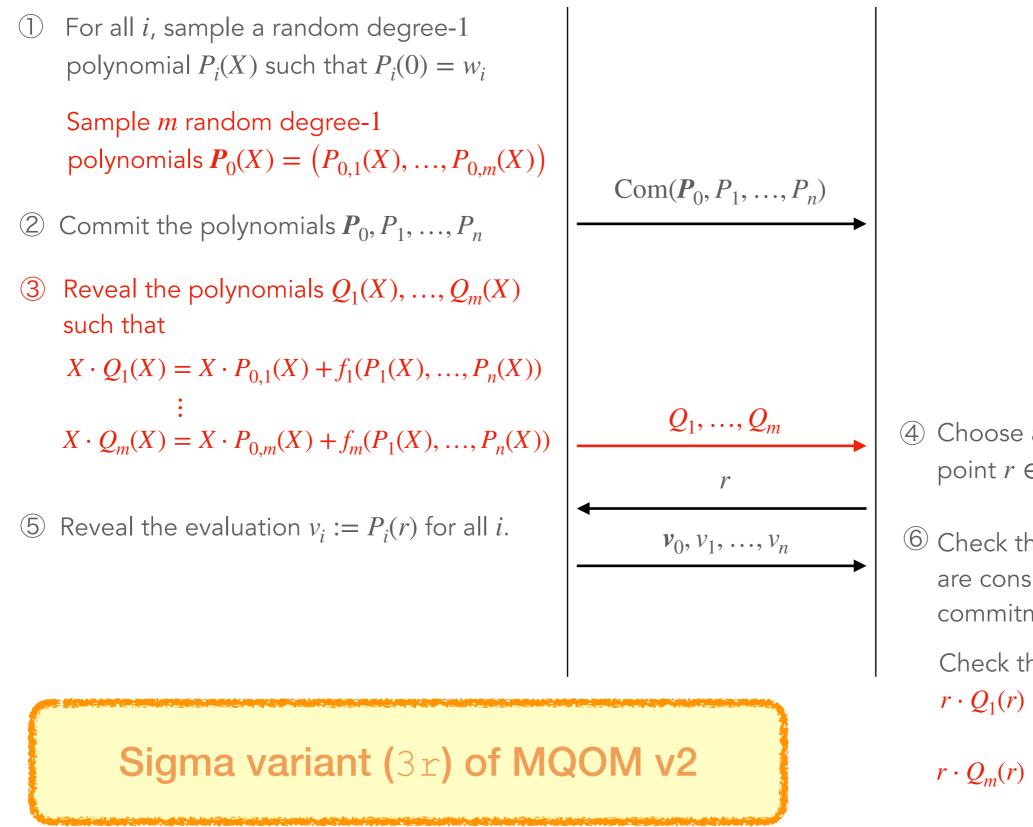






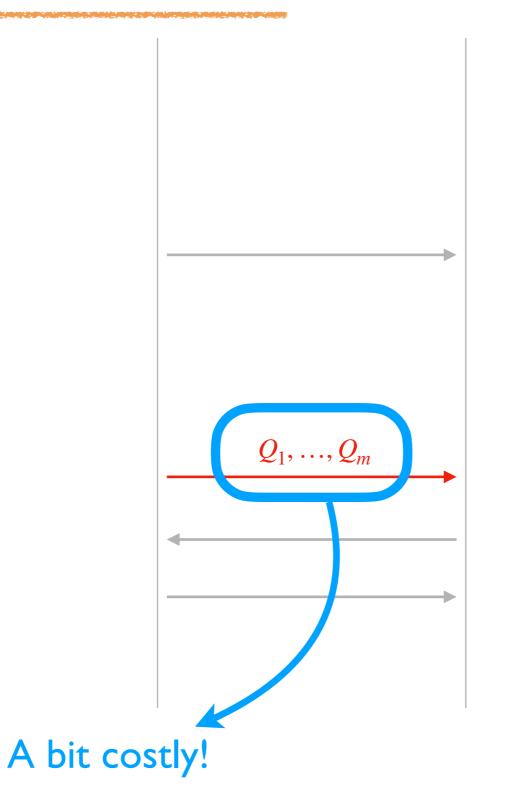
- (4) Choose a random evaluation point $r \in S \subset \mathbb{F}$
- ⁽⁶⁾ Check that $v_0, v_1, ..., v_n$ are consistent with the commitment.

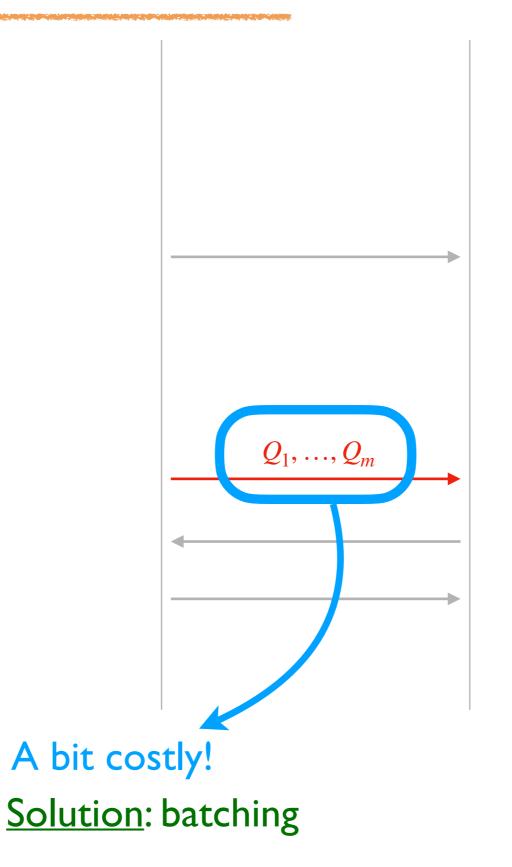
Check that $r \cdot Q_1(r) = r \cdot v_{0,1} + f_1(v_1, \dots, v_n)$ \vdots $r \cdot Q_m(r) = r \cdot v_{0,m} + f_m(v_1, \dots, v_n)$



- (4) Choose a random evaluation point $r \in S \subset \mathbb{F}$
- ⁽⁶⁾ Check that $v_0, v_1, ..., v_n$ are consistent with the commitment.

Check that $r \cdot Q_1(r) = r \cdot v_{0,1} + f_1(v_1, \dots, v_n)$ \vdots $r \cdot Q_m(r) = r \cdot v_{0,m} + f_m(v_1, \dots, v_n)$

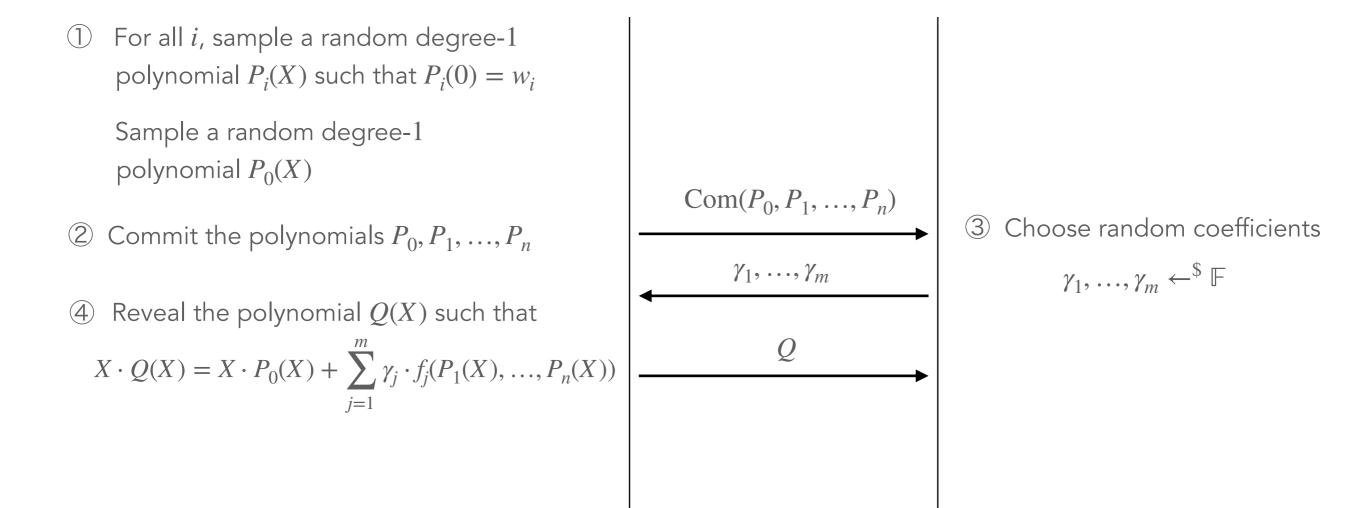


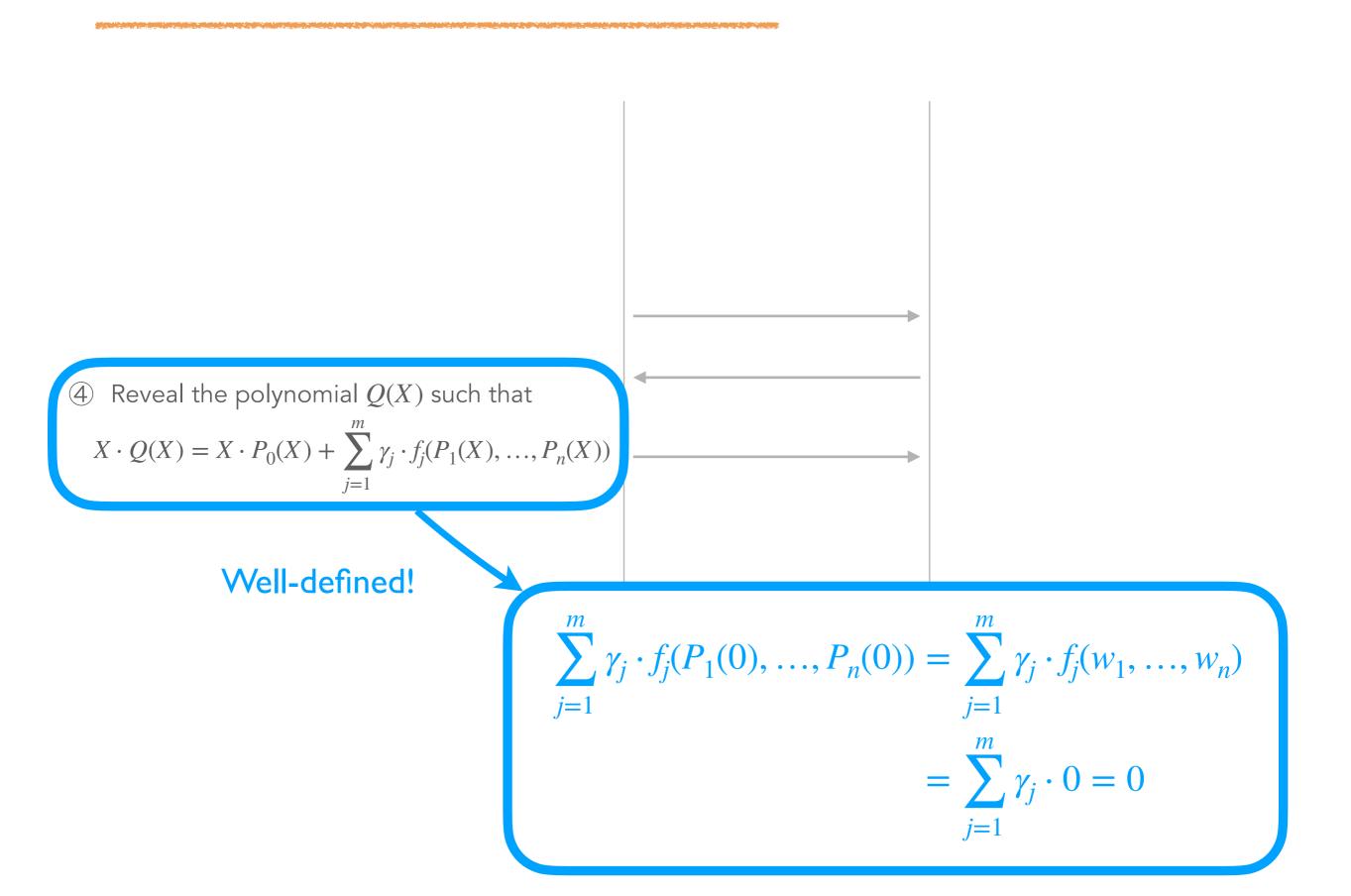


① For all *i*, sample a random degree-1 polynomial $P_i(X)$ such that $P_i(0) = w_i$ Sample a random degree-1 polynomial $P_0(X)$

② Commit the polynomials $P_0, P_1, ..., P_n$

$$Com(P_0, P_1, ..., P_n)$$





- 1 For all *i*, sample a random degree-1 polynomial $P_i(X)$ such that $P_i(0) = w_i$ Sample a random degree-1 polynomial $P_0(X)$
 - ② Commit the polynomials $P_0, P_1, ..., P_n$
 - (4) Reveal the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^m \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$

(6) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

$$Com(P_0, P_1, \dots, P_n)$$

$$\gamma_1, \dots, \gamma_m$$

$$Q$$

$$r$$

$$\nu_0, \nu_1, \dots, \nu_n$$

③ Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$

(5) Choose a random evaluation point $r \in S \subset \mathbb{F}$

- 1 For all *i*, sample a random degree-1 polynomial $P_i(X)$ such that $P_i(0) = w_i$ Sample a random degree-1 polynomial $P_0(X)$
- ② Commit the polynomials $P_0, P_1, ..., P_n$
- (4) Reveal the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^m \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$

(6) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

$$Com(P_0, P_1, \dots, P_n)$$

$$\gamma_1, \dots, \gamma_m$$

$$Q$$

$$r$$

$$\nu_0, \nu_1, \dots, \nu_n$$

③ Choose random coefficients
$$\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$$

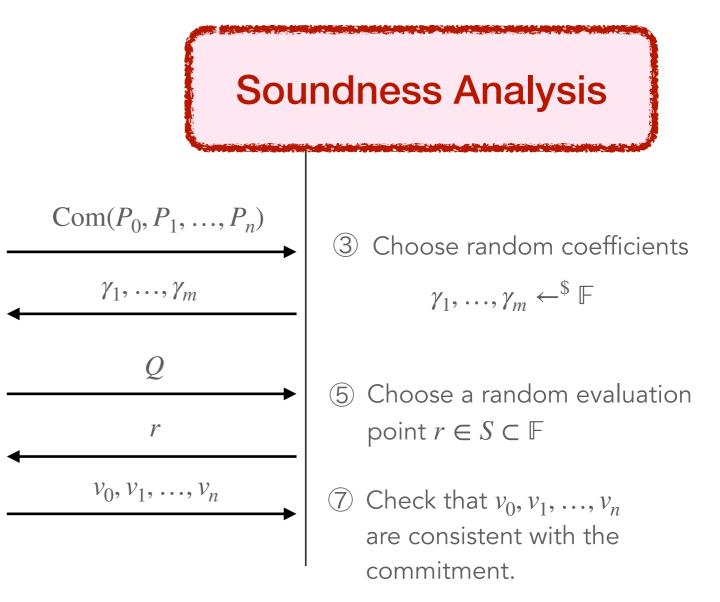
- (5) Choose a random evaluation point $r \in S \subset \mathbb{F}$
- (7) Check that $v_0, v_1, ..., v_n$ are consistent with the commitment.

Check that

$$r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^m \gamma_j \cdot f_j(v_1, \dots, v_n)$$

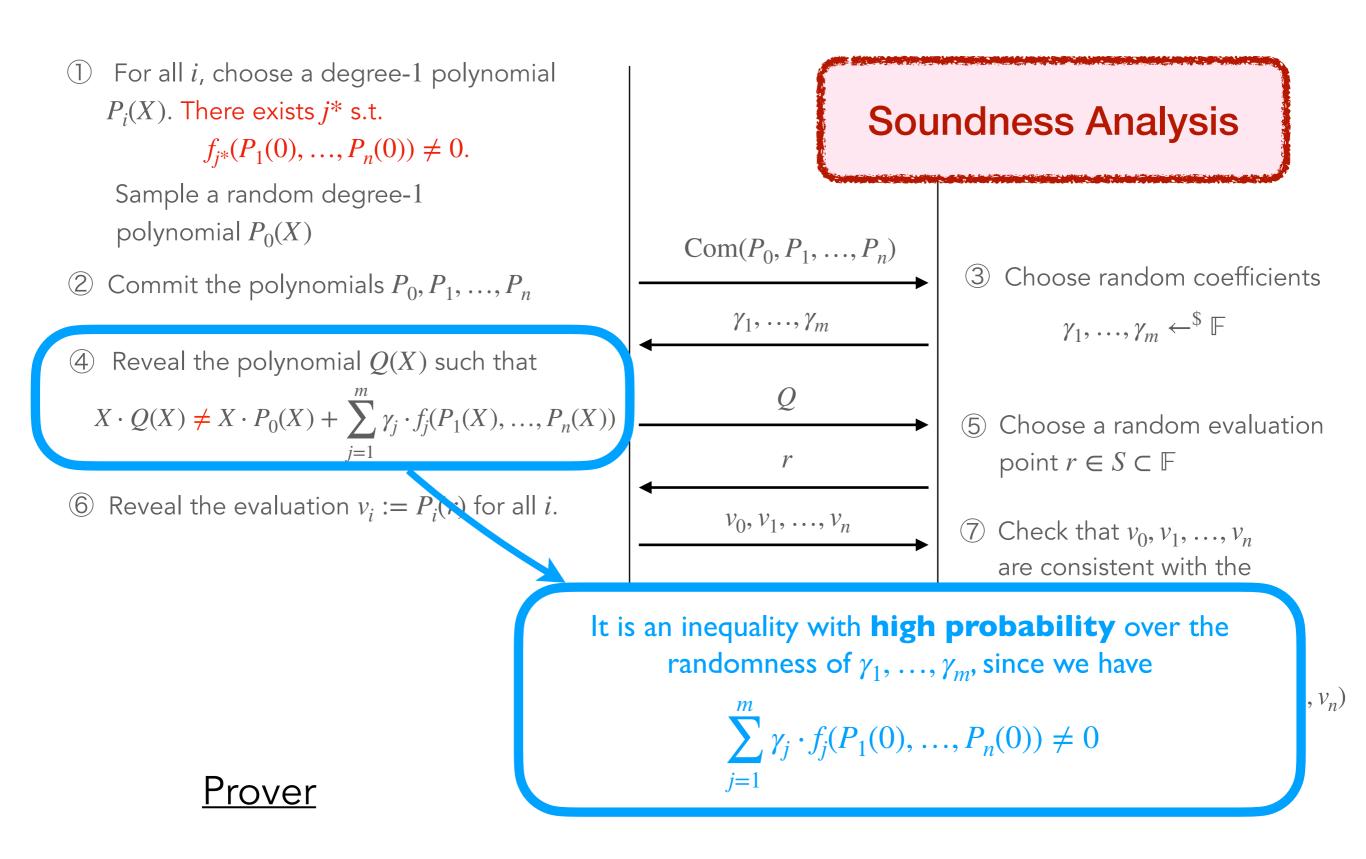
- 1 For all *i*, choose a degree-1 polynomial $P_i(X)$. There exists j^* s.t. $f_{j^*}(P_1(0), \dots, P_n(0)) \neq 0$. Sample a random degree-1 polynomial $P_0(X)$
- ② Commit the polynomials $P_0, P_1, ..., P_n$
- (4) Reveal the polynomial Q(X) such that $X \cdot Q(X) \neq X \cdot P_0(X) + \sum_{j=1}^m \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$

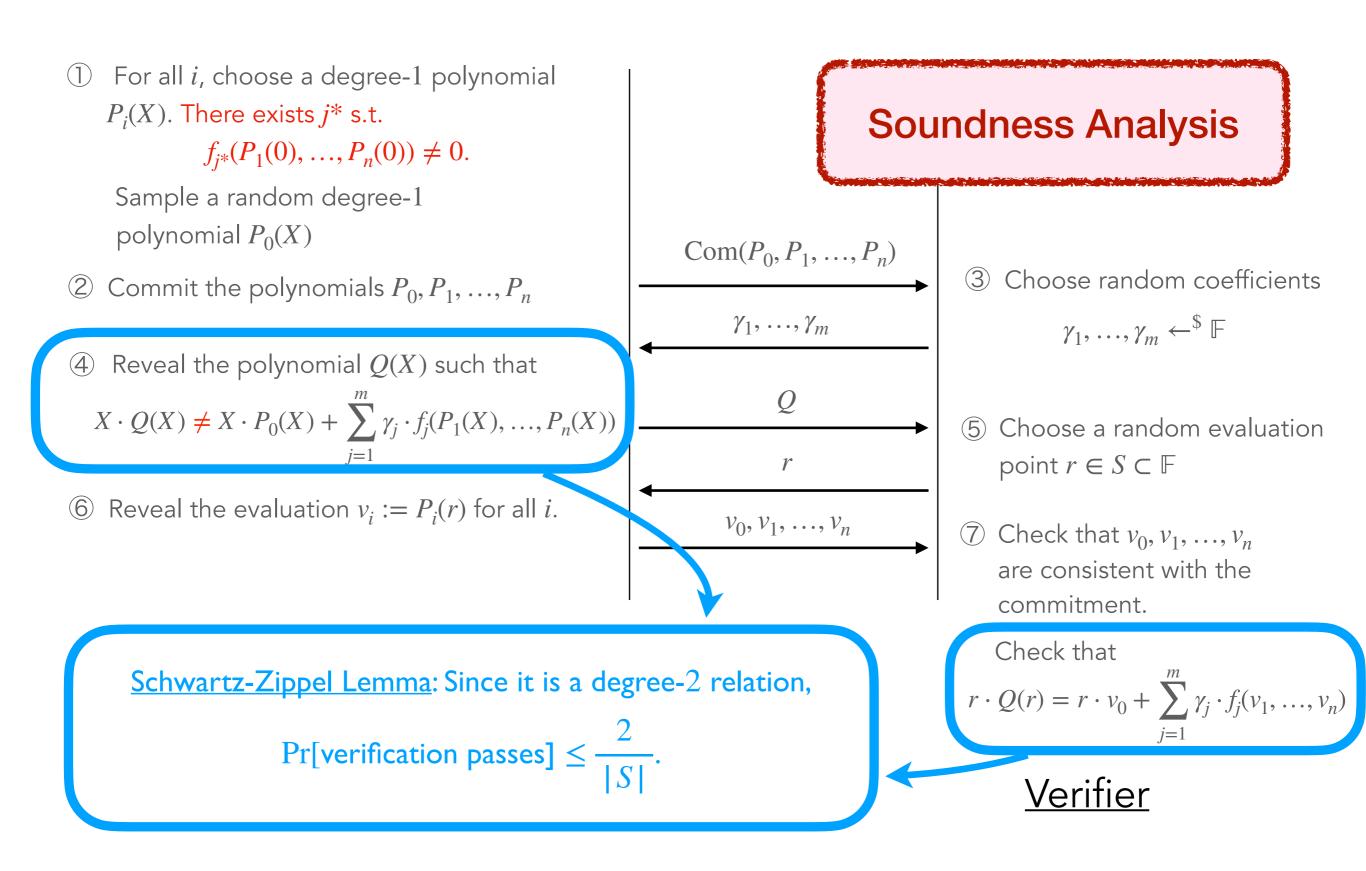
(6) Reveal the evaluation $v_i := P_i(r)$ for all *i*.



Check that

$$r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^m \gamma_j \cdot f_j(v_1, \dots, v_n)$$





- (1) For all *i*, sample a random degree-1 polynomial $P_i(X)$ such that $P_i(0) = w_i$ Sample a random degree-1 polynomial $P_0(X)$
- ② Commit the polynomials $P_0, P_1, ..., P_n$
- (4) Reveal the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^m \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$

6 Reveal the evaluation $v_i := P_i(r)$ for all *i*.

$$Com(P_0, P_1, \dots, P_n)$$

$$\gamma_1, \dots, \gamma_m$$

$$Q$$

$$r$$

$$\nu_0, \nu_1, \dots, \nu_n$$

③ Choose random coefficients
$$\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$$

- (5) Choose a random evaluation point $r \in S \subset \mathbb{F}$
- (7) Check that $v_0, v_1, ..., v_n$ are consistent with the commitment.

Check that

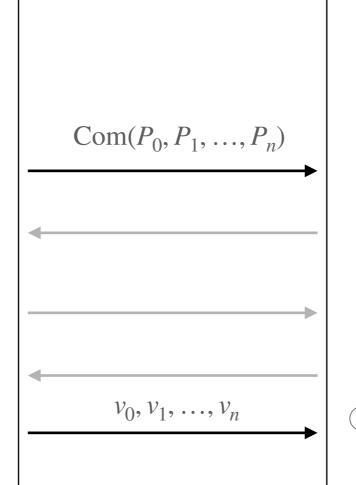
$$r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^m \gamma_j \cdot f_j(v_1, \dots, v_n)$$

<u>Verifier</u>

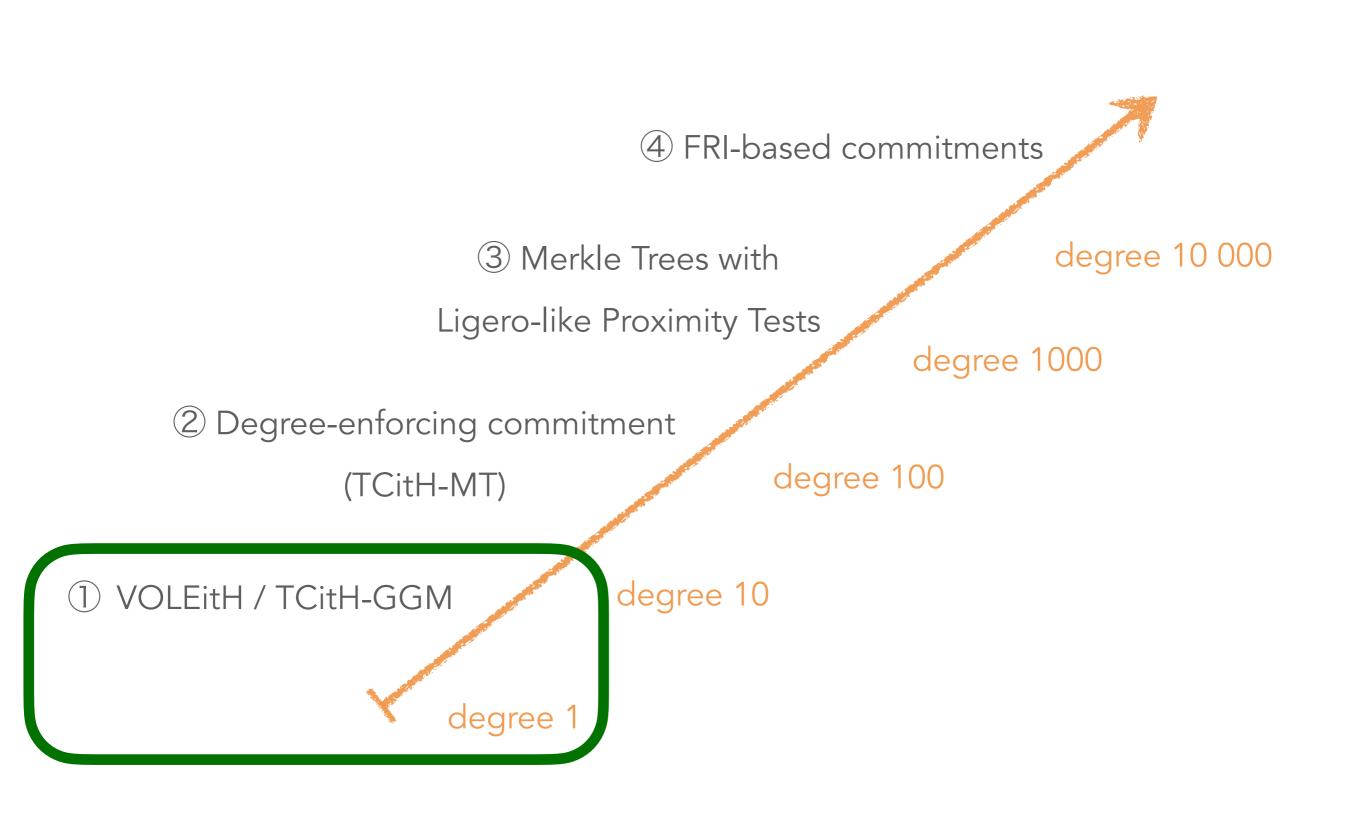
5-round variant (5r) of MQOM v2

② Commit the polynomials $P_0, P_1, ..., P_n$

6 Reveal the evaluation $v_i := P_i(r)$ for all *i*.



(7) Check that $v_0, v_1, ..., v_n$ are consistent with the commitment.



 $\frac{Commitment}{We \text{ commit to each value}}$ $r_i \text{ independently}.$

 $\frac{Commitment}{We \text{ commit to each value}}$ $r_i \text{ independently}.$

<u>Opening $P(e_{i^*})$ </u>: Reveal all $\{r_i\}_{i \neq i^*}$.

$$P(e_{i^*}) = \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) + r_{i^*} \cdot \underbrace{R_{i^*}(e_{i^*})}_{=0}$$
$$= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*})$$

The opening leaks nothing about P, except $P(e_{i^*})$.

<u>Commitment</u>: We commit to each value r_i independently. <u>Opening $P(e_{i^*})$ </u>: Reveal all $\{r_i\}_{i \neq i^*}$.

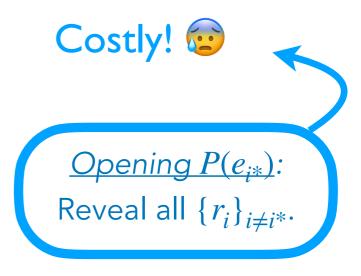
$$\begin{split} P(e_{i^*}) &= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) + r_{i^*} \cdot \underbrace{R_{i^*}(e_{i^*})}_{=0} \\ &= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) \end{split}$$

<u>Commitment</u>: We commit to each value r_i independently. <u>Opening $P(e_{i^*})$ </u>: Reveal all $\{r_i\}_{i \neq i^*}$.

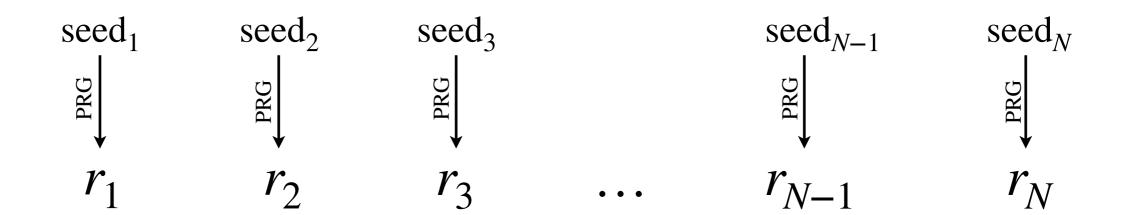
The opening leaks nothing about P, except $P(e_{i^*})$.

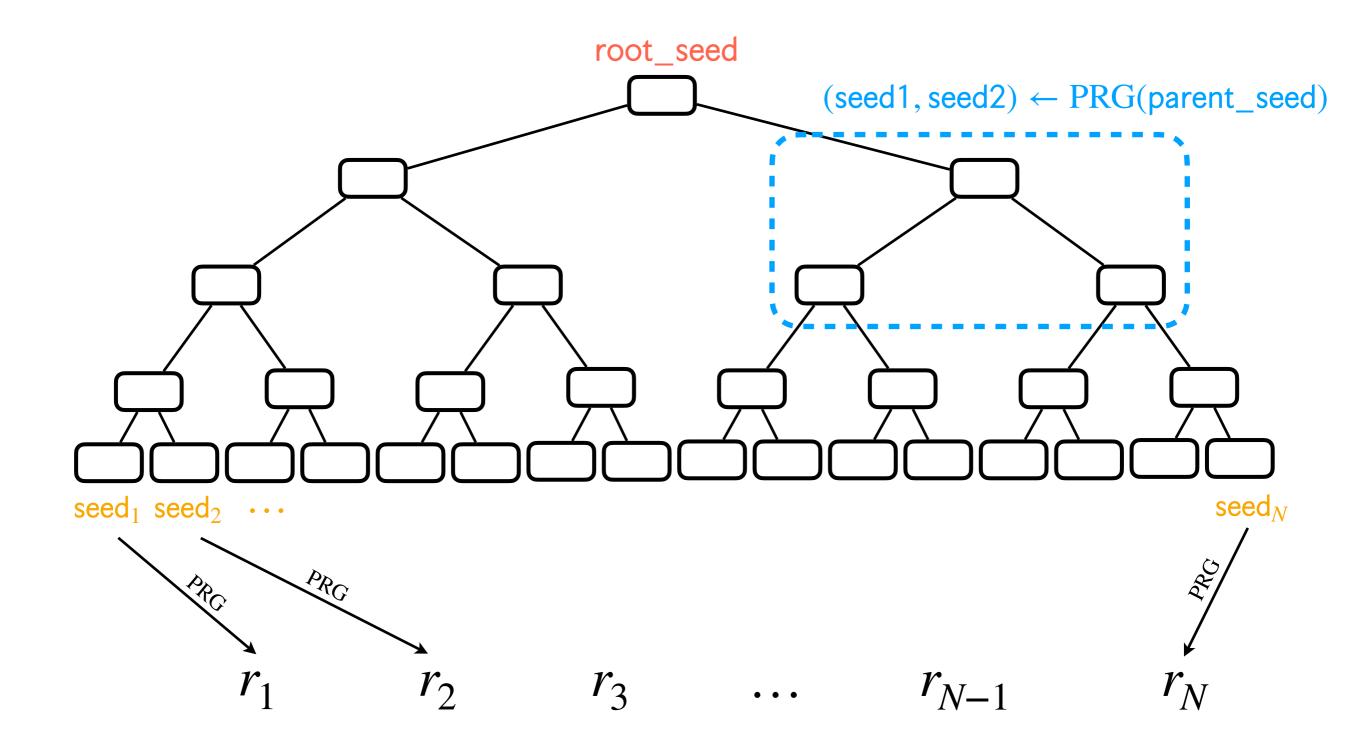
X Can be adapted to any degree.

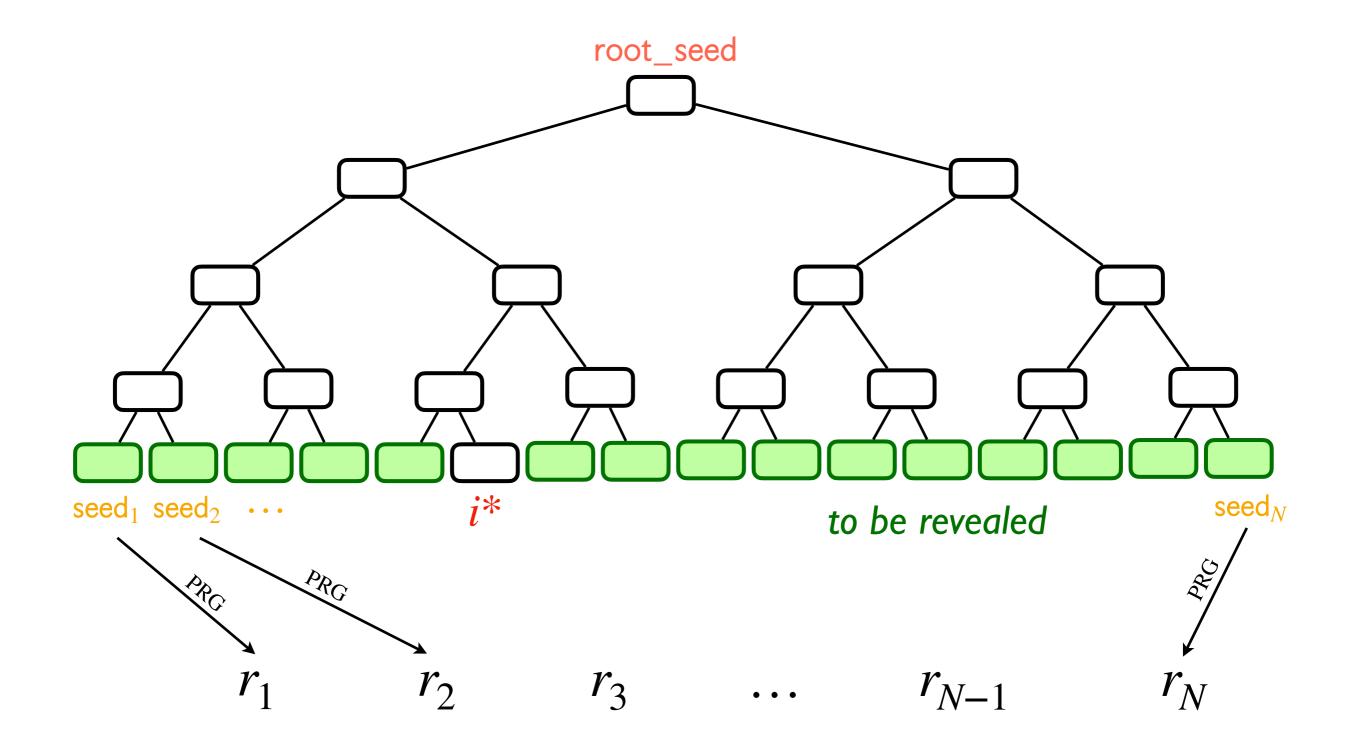
$$P(e_{i^*}) = \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) + r_{i^*} \cdot \underbrace{R_{i^*}(e_{i^*})}_{=0}$$
$$= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*})$$

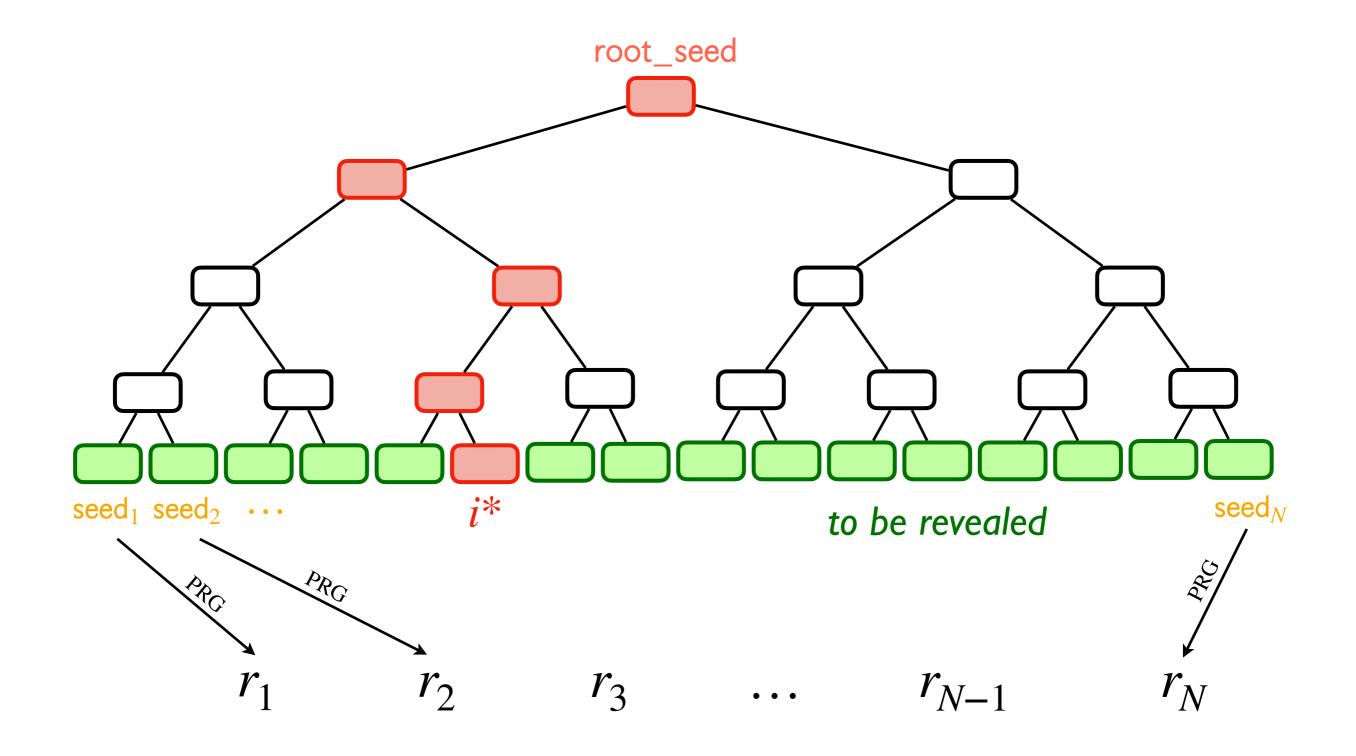


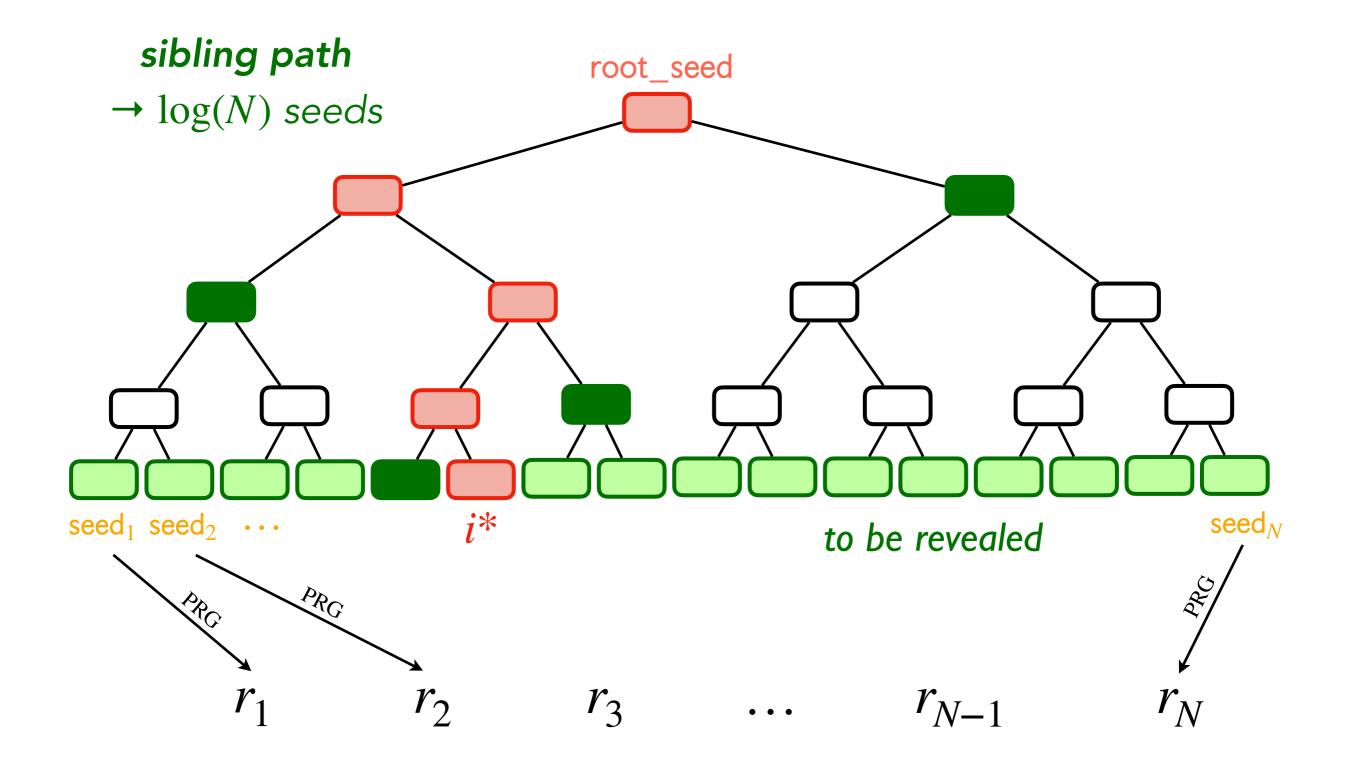
$r_1 \qquad r_2 \qquad r_3 \qquad \dots \qquad r_{N-1} \qquad r_N$

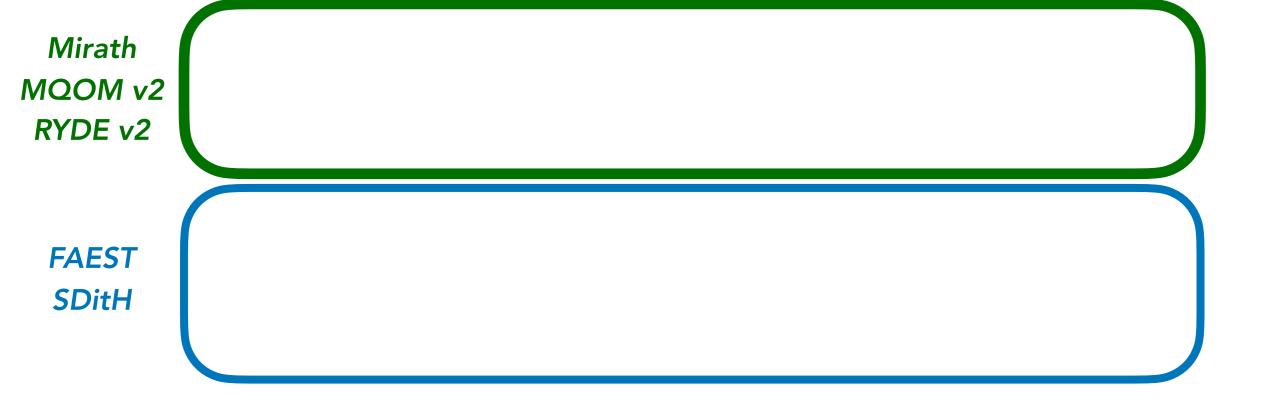


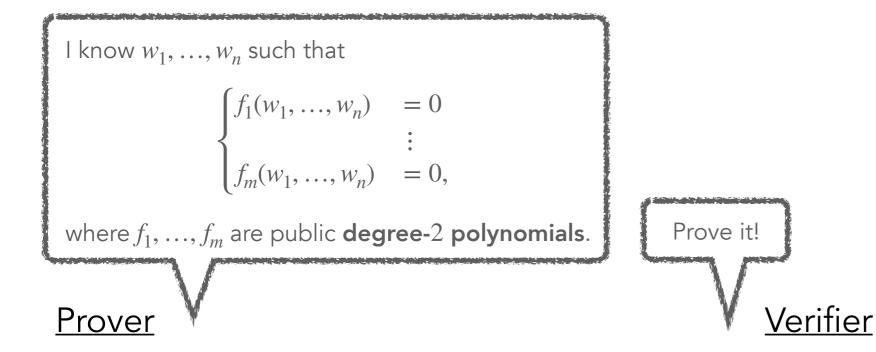


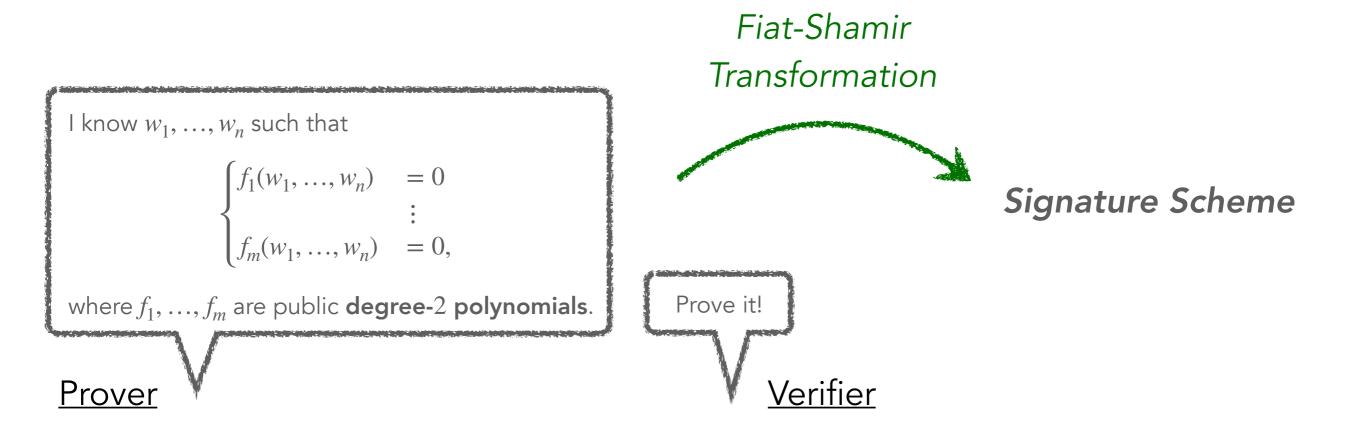












MQOMv2 Instance		PK Size	Sizes (R3)	Sizes (R5)	Sig. / Verif. Running times	
NIST I	gf2	Short	52 B	2 868 B	2 820 B	≈ 18-20 Mcycles
		Fast		3 212 B	3 144 B	≈ 9-10 Mcycles
	gf256	Short	80 B	3 540 B	3 156 B	≈ 12-15 Mcycles
		Fast		4 164 B	3 620 B	≈ 3-4 Mcycles
	gf2	Short	104 B	11764 B	11 564 B	≈ 133-143 Mcycles
NIST V		Fast		13412 B	13 124 B	≈ 85-88 Mcycles
	gf256	Short	160 B	14 564 B	12 964 B	≈ 56-61 Mcycles
		Fast		17 444 B	15 140 B	≈ 14-15 Mcycles

	NIST Submission		
Security Assumpt	Candidate Name	Sizes	
AES Block sinher	Secret Key	FAEST	4.5-5.9 KB
AES Block cipher	Fixed Key (EM)	FAEST-EM	3.9-5.1 KB
MinRank	Field GF(2)	Mirath	2.9-3.5 KB
IVIIIINdIIK	Field GF(16)	IVIIIatri	3.1-3.7 KB
Multivariate Quadratic	Field GF(2)	MQOM	2.8-3.2 KB
	Field GF(256)		3.1-4.1 KB
Permuted Kernel	t=3	PERK	6.3-8.4 KB
remuted Kemer	t=5	FERR	5.8-8.0 KB
Rank Syndrome De	ecoding	RYDE	3.0-3.6 KB
Syndrome Deco	SDitH	3.7-4.5 KB	

- Among the shortest MPCitH signature schemes:
 - Since all the other one-way functions as expressed as a **structured** (quadratic or cubic) multivariate system, it leads to **larger** systems for a given field, and so the MQ-based signature is the more efficient (in terms of communication).
- Among the simplest MPCitH signature schemes:
 - Do not need to arithmetize the one-way function as a multivariate system.
 - Rely on the TCitH framework
- MQOM v2 is the only NIST MPCitH-based candidate that has a variant with 3 rounds (the other schemes have 5 rounds or 7 rounds).

- Implementation effort for the new versions of the MPCitH-based schemes
- Fine-tuning of the parameters for trade-offs
- Many possible optimizations

- Use of Rijndael-based ciphers (AES128, Rijndael-256-256, ...) for seed derivation and seed commitments
- Possible choices for tree derivation

• ...

- Implementation effort for the new versions of the MPCitH-based schemes
- Fine-tuning of the parameters for trade-offs
- Many possible optimizations

- Use of Rijndael-based ciphers (AES128, Rijndael-256-256, ...) for seed derivation and seed commitments
- Possible choices for tree derivation
- ...

Thank you for your attention.